SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Eveillard M) srt2:(2020-2022)"

Search: WFRF:(Eveillard M) > (2020-2022)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abreu, A., et al. (author)
  • Priorities for ocean microbiome research
  • 2022
  • In: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 7:7, s. 937-947
  • Journal article (peer-reviewed)abstract
    • Studying the ocean microbiome can inform international policies related to ocean governance, tackling climate change, ocean acidification and pollution, and can help promote achievement of multiple Sustainable Development Goals. Microbial communities have essential roles in ocean ecology and planetary health. Microbes participate in nutrient cycles, remove huge quantities of carbon dioxide from the air and support ocean food webs. The taxonomic and functional diversity of the global ocean microbiome has been revealed by technological advances in sampling, DNA sequencing and bioinformatics. A better understanding of the ocean microbiome could underpin strategies to address environmental and societal challenges, including achievement of multiple Sustainable Development Goals way beyond SDG 14 'life below water'. We propose a set of priorities for understanding and protecting the ocean microbiome, which include delineating interactions between microbiota, sustainably applying resources from oceanic microorganisms and creating policy- and funder-friendly ocean education resources, and discuss how to achieve these ambitious goals.
  •  
2.
  • Dittami, Simon M., et al. (author)
  • A community perspective on the concept of marine holobionts : current status, challenges, and future directions
  • 2021
  • In: PeerJ. - : PEERJ INC. - 2167-8359. ; 9
  • Journal article (peer-reviewed)abstract
    • Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.
  •  
3.
  •  
4.
  • Murray, Alison E., et al. (author)
  • Roadmap for naming uncultivated Archaea and Bacteria
  • 2020
  • In: Nature Microbiology. - : NATURE PUBLISHING GROUP. - 2058-5276. ; 5:8, s. 987-994
  • Journal article (peer-reviewed)abstract
    • The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity. In this Consensus Statement, the authors discuss the issue of naming uncultivated prokaryotic microorganisms, which currently do not have a formal nomenclature system due to a lack of type material or cultured representatives, and propose two recommendations including the recognition of DNA sequences as type material.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view