SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Farde L) srt2:(2015-2019)"

Search: WFRF:(Farde L) > (2015-2019)

  • Result 1-50 of 73
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schwarz, E, et al. (author)
  • Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder
  • 2019
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 9:1, s. 12-
  • Journal article (peer-reviewed)abstract
    • Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/ hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Forsberg, A., et al. (author)
  • The Immune Response of the Human Brain to Abdominal Surgery
  • 2017
  • In: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 81:4, s. 572-582
  • Journal article (peer-reviewed)abstract
    • Objective: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans. This study examines the short-and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. Methods: Eight males undergoing prostatectomy under general anesthesia were included. Prior to surgery (baseline), at postoperative days 3 to 4, and after 3 months, patients were examined using [C-11]PBR28 brain PET imaging to assess brain immune cell activation. Concurrently, systemic inflammatory biomarkers, ex vivo blood tests on immunoreactivity to lipopolysaccharide (LPS) stimulation, and cognitive function were assessed. Results: Patients showed a global downregulation of gray matter [C-11]PBR28 binding of 26 +/- 26% (mean +/- standard deviation) at 3 to 4 days postoperatively compared to baseline (p=0.023), recovering or even increasing after 3 months. LPS-induced release of the proinflammatory marker tumor necrosis factor-a in blood displayed a reduction (41 +/- 39%) on the 3rd to 4th postoperative day, corresponding to changes in [C-11]PBR28 distribution volume. Change in Stroop Color-Word Test performance between postoperative days 3 to 4 and 3 months correlated to change in [C-11]PBR28 binding (p=0.027). Interpretation: This study translates preclinical data on changes in the brain immune system after surgery to humans, and suggests an interplay between the human brain and the inflammatory response of the peripheral innate immune system. These findings may be related to postsurgical impairments of cognitive function.
  •  
6.
  • Malmqvist, Anna, et al. (author)
  • Increased peripheral levels of TARC/CCL17 in first episode psychosis patients
  • 2019
  • In: Schizophrenia Research. - : ELSEVIER. - 0920-9964 .- 1573-2509. ; 210, s. 221-227
  • Journal article (peer-reviewed)abstract
    • Background: Evidence for a link between the pathophysiology of schizophrenia and the immune system is mounting. Altered levels of chemokines in plasma have previously been reported in patients with schizophrenia under antipsychotic medication. Here we aimed to study both peripheral and central chemokine levels in drugnaive or short-time medicated first episode psychosis (FEP) patients. Method: We analyzed nine chemokines in plasma and CSF from 41 FEP patients and 22 healthy controls using electrochemiluminescence assay. Results: In plasma four chemokines; TARC/CCL17, eotaxin/CCL11, MDC/CCL22, IP-10/CXCL10 and in CSF one chemokine; IP-10/CXCL10 showed reliable detection in N50% of the cases. FEP patients displayed increased levels of TARC/CCL17 in plasma compared to healthy controls, 89.6 (IQR 66.2-125.8) pg/mL compared to 48.6 (IQR 28.0-71.7) pg/mL (p = 0.001). The difference was not attributed to confounding factors. Plasma TARC/CCL17 was not associated with PANSS, CGI or GAF scores, neither with cognitive functions. The chemokines eotaxin/CCL11, MDC/CCL22, IP-10/CXCL10 in plasma and IP-10/CXCL10 in CSF did not differ between FEP patients and controls. Conclusion: In line with a previous study showing that chronic patients with schizophrenia display increased plasma TARC/CCL17 levels, we here found an elevation in FEP patients suggesting a role of TARC/CCL17 in early stages of schizophrenia. The exactmechanism of this involvement is still unknown and future longitudinal studies as well as studies of central and peripheral chemokine levels would be of great interest. (C) 2018 Elsevier B.V. All rights reserved.
  •  
7.
  • Orhan, F., et al. (author)
  • Increased number of monocytes and plasma levels of MCP-1 and YKL-40 in first-episode psychosis
  • 2018
  • In: Acta Psychiatrica Scandinavica. - : WILEY. - 0001-690X .- 1600-0447. ; 138:5, s. 432-440
  • Journal article (peer-reviewed)abstract
    • ObjectiveMethodAccumulating evidence implicates immune activation in the development of schizophrenia. Here, monocyte numbers, monocyte chemoattractant protein-1 (MCP-1) and chitinase-3-like protein 1 (YKL-40) were investigated in plasma and cerebrospinal fluid (CSF) in first-episode psychosis (FEP) patients. CSF and blood were sampled from 42 first-episode psychosis (FEP) patients and 22 healthy controls. The levels of YKL-40 and MCP-1 were measured using electrochemiluminescence assay, and blood monocytes were counted using an XN-9000-hematology analyzer. ResultsConclusionWe found higher plasma levels of MCP-1 and YKL-40 in FEP patients compared with healthy controls, a condition that was unrelated to antipsychotic and/or anxiolytic medication. This was combined with an increased number of blood monocytes and a borderline significant increase in YKL-40 levels in the CSF of tobacco-free FEP patients. Plasma or CSF chemokines or blood monocytes did not correlate with the severity of symptoms or the level of functioning. These data demonstrate activation of monocytes in FEP and strengthens the idea of an immune dysfunction of psychotic disorders. Further studies are required to perceive a role of YKL-40 and MCP-1 in the initiation and progression of schizophrenia.
  •  
8.
  •  
9.
  • Collste, K., et al. (author)
  • Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and [C-11]PBR28
  • 2017
  • In: Molecular Psychiatry. - : NATURE PUBLISHING GROUP. - 1359-4184 .- 1476-5578. ; 22:6, s. 850-856
  • Journal article (peer-reviewed)abstract
    • Several lines of evidence are indicative of a role for immune activation in the pathophysiology of schizophrenia. Nevertheless, studies using positron emission tomography (PET) and radioligands for the translocator protein (TSPO), a marker for glial activation, have yielded inconsistent results. Whereas early studies using a radioligand with low signal-to-noise in small samples showed increases in patients, more recent studies with improved methodology have shown no differences or trend-level decreases. Importantly, all patients investigated thus far have been on antipsychotic medication, and as these compounds may dampen immune cell activity, this factor limits the conclusions that can be drawn. Here, we examined 16 drug-naive, first-episode psychosis patients and 16 healthy controls using PET and the TSPO radioligand [C-11]PBR28. Gray matter (GM) volume of distribution (V-T) derived from a two-tissue compartmental analysis with arterial input function was the main outcome measure. Statistical analyses were performed controlling for both TSPO genotype, which is known to affect [C-11]PBR28 binding, and gender. There was a significant reduction of [C-11]PBR28 V-T in patients compared with healthy controls in GM as well as in secondary regions of interest. No correlation was observed between GM V-T and clinical or cognitive measures after correction for multiple comparisons. The observed decrease in TSPO binding suggests reduced numbers or altered function of immune cells in brain in early-stage schizophrenia.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Kaufmann, Tobias, et al. (author)
  • Common brain disorders are associated with heritable patterns of apparent aging of the brain
  • 2019
  • In: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 22:10, s. 1617-
  • Journal article (peer-reviewed)abstract
    • Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Varnäs, K., et al. (author)
  • Integrated strategy for use of positron emission tomography in nonhuman primates to confirm multitarget occupancy of novel psychotropic drugs : An example with AZD3676
  • 2016
  • In: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology and Experimental Therapy. - 0022-3565 .- 1521-0103. ; 358:3, s. 464-471
  • Journal article (peer-reviewed)abstract
    • Positron emission tomography (PET) is widely applied in central nervous system (CNS) drug development for assessment of target engagement in vivo. As the majority of PET investigations have addressed drug interaction at a single binding site, findings of multitarget engagement have been less frequently reported and have often been inconsistent with results obtained in vitro. AZD3676 [N,N-dimethyl-7-(4-(2-(pyridin-2-yl)ethyl)piperazin-1-yl) benzofuran-2-carboxamide] is a novel combined serotonin (5- hydroxytryptamine) 5-HT1A and 5-HT1B receptor antagonist that was developed for the treatment of cognitive impairment in Alzheimer's disease. Here, we evaluated the properties of AZD3676 as a CNS drug by combining in vitro and ex vivo radioligand binding techniques, behavioral pharmacology in rodents, and PET imaging in nonhuman primates. Target engagement in the nonhuman primate brain was assessed in PET studies by determination of drug-induced occupancy using receptorselective radioligands. AZD3676 showed preclinical properties consistent with CNS drug potential, including nanomolar receptor affinity and efficacy in rodent models of learning and memory. In PET studies of the monkey brain, AZD3676 inhibited radioligand binding in a dose-dependent manner with similar affinity at both receptors. The equally high affinity at 5-HT1A and 5-HT1B receptors as determined in vivo was not predicted from corresponding estimates obtained in vitro, suggestingmore than 10-fold selectivity for 5-HT1A versus 5-HT1B receptors. These findings support the further integrated use of PET for confirmation of multitarget occupancy of CNS drugs. Importantly, earlier introduction of PET studies in nonhuman primates may reduce future development costs and the requirement for animal experiments in preclinical CNS drug development programs.
  •  
21.
  • Alnaes, Dag, et al. (author)
  • Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk
  • 2019
  • In: JAMA psychiatry. - : AMER MEDICAL ASSOC. - 2168-6238 .- 2168-622X. ; 76:7, s. 739-748
  • Journal article (peer-reviewed)abstract
    • ImportanceBetween-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. ObjectivesTo compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and ParticipantsThis case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and MeasuresMean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. ResultsA comparison of 1151 patients with schizophrenia (mean [SD] age,33.8[10.6] years; 68.6% male [n=790] and 31.4% female [n=361]) with 2010 healthy controls (mean [SD] age,32.6[10.4] years; 56.0% male [n=1126] and 44.0% female [n=884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t=3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age,55.9 [7.5] years; 48.2% male [n=6025] and 51.8% female [n=6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t=-3.00) but was not significantly associated with dispersion. Conclusions and RelevanceThis study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
  •  
22.
  •  
23.
  •  
24.
  • Borg, J., et al. (author)
  • Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain
  • 2016
  • In: Molecular Psychiatry. - London, United Kingdom : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 51, s. 879-879
  • Journal article (peer-reviewed)abstract
    • The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about the regulation of receptor and transporter density levels. This lack of knowledge obscures interpretation of differences in protein availability reported in psychiatric patients. In this study, we used positron emission tomography (PET) in a twin design to estimate the relative contribution of genetic and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A receptor. Heritability, shared environmental effects and individual-specific non-shared effects were estimated for regional D2/3 and 5-HT1A receptor availability in projection areas. We found a major contribution of genetic factors (0.67) on individual variability in striatal D2/3 receptor binding and a major contribution of environmental factors (pairwise shared and unique individual; 0.70-0.75) on neocortical 5-HT1A receptor binding. Our findings indicate that individual variation in neuroreceptor availability in the adult brain is the end point of a nature-nurture interplay, and call for increased efforts to identify not only the genetic but also the environmental factors that influence neurotransmission in health and disease.
  •  
25.
  • Collste, K., et al. (author)
  • Test-retest reproducibility of [C-11]PBR28 binding to TSPO in healthy control subjects
  • 2016
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : SPRINGER. - 1619-7070 .- 1619-7089. ; 43:1, s. 173-183
  • Journal article (peer-reviewed)abstract
    • Purpose The PET radioligand [C-11]PBR28 binds to the translocator protein (TSPO), a marker of brain immune activation. We examined the reproducibility of [C-11]PBR28 binding in healthy subjects with quantification on a regional and voxel-by-voxel basis. In addition, we performed a preliminary analysis of diurnal changes in TSPO availability. Methods Twelve subjects were examined using a high-resolution research tomograph and [C-11]PBR28, six in the morning and afternoon of the same day, and six in the morning on two separate days. Regional volumes of distribution (V-T) were derived using a region-of-interest based two-tissue compartmental analysis (2TCM), as well as a parametric approach. Metabolite-corrected arterial plasma was used as input function. Results For the whole sample, the mean absolute variability in V (T) in the grey matter (GM) was 18.3 +/- 12.7 %. Intraclass correlation coefficients in GM regions ranged from 0.90 to 0.94. Reducing the time of analysis from 91 to 63 min yielded a variability of 16.9 +/- 14.9 %. There was a strong correlation between the parametric and 2TCM-derived GM values (r=0.99). A significant increase in GM V-T was observed between the morning and afternoon examinations when using secondary methods of quantification (p=0.028). In the subjects examined at the same time of the day, the absolute variability was 15.9 +/- 12.2 % for the 91-min 2TCM data. Conclusion V-T of [C-11]PBR28 binding showed medium reproducibility and high reliability in GM regions. Our findings support the use of parametric approaches for determining [C-11]PBR28 V-T values, and indicate that the acquisition time could be shortened. Diurnal changes in TSPO binding in the brain may be a potential confounder in clinical studies and should be investigated further.
  •  
26.
  • Cselenyi, Z, et al. (author)
  • Quantification of blood flow-dependent component in estimates of beta-amyloid load obtained using quasi-steady-state standardized uptake value ratio
  • 2015
  • In: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016. ; 35:9, s. 1485-1493
  • Journal article (peer-reviewed)abstract
    • Longitudinal positron emission tomography (PET) imaging of beta-amyloid is used in basic research and in drug efficacy trials in Alzheimer's disease (AD). However, the extent of amyloid accumulation after clinical onset is not fully known. Importantly, regional PET data are typically quantified using the standardized uptake value ratio (SUVR), which according to simulations is sensitive to changes in regional cerebral blood flow (rCBF). We aimed to better understand the potentials of longitudinal amyloid imaging by disentangling the influence of blood flow on SUVR using experimental data. [18F]AV-45 PET data from 101 subjects, ranging from cognitively normal to AD patients, in the Alzheimer's Disease Neuroimaging Initiative were extracted. The relationship between global cortical distribution volume ratio, indicator of rCBF (R1), and SUVR was examined using multilinear regression. There was a significant effect of rCBF on SUVR. The effect increased by disease severity. Results suggest that changes in rCBF can produce apparent changes in SUVR in AD. Therefore, future longitudinal studies should measure amyloid changes in a way not sensitive to this effect, ideally using quantitative PET imaging. Furthermore, the results suggest no true accumulation beyond clinical onset and highlight the risks of longitudinal amyloid imaging in drug trials in AD.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  • Forsberg, A., et al. (author)
  • Disease activity in rheumatoid arthritis is inversely related to cerebral TSPO binding assessed by [C-11]PBR28 positron emission tomography
  • 2019
  • In: Journal of Neuroimmunology. - : Elsevier BV. - 0165-5728 .- 1872-8421. ; 334
  • Journal article (peer-reviewed)abstract
    • Reumatoid Arthritis (RA) is an autoimmune disorder characterized by peripheral joint inflammation. Recently, an engagement of the brain immune system has been proposed. The aim with the current investigation was to study the glial cell activation marker translocator protein (TSPO) in a well characterized cohort of RA patients and to relate it to disease activity, peripheral markers of inflammation and autonomic activity. Fifteen RA patients and fifteen healthy controls matched for age, sex and TSPO genotype (rs6971) were included in the study. TSPO was measured using Positron emission tomography (PET) and the radioligand [C-11] PBR28. The outcome measure was total distribution volume (V-T) estimated using Logan graphical analysis, with grey matter (GM) as the primary region of interest. Additional regions of interest analyses as well as voxel-wise analyses were also performed. Clinical evaluation of disease activity, symptom assessments, serum analyses of cytokines and heart rate variability (HRV) analysis of 24 h ambulatory ECG were performed in all subjects. There were no statistically significant group differences in TSPO binding, either when using the primary outcome V-T or when normalizing V-T to the lateral occipital cortex (p > 0.05). RA patients had numerically lower V-T values than healthy controls (Cohen's D for GM = -0.21). In the RA group, there was a strong negative correlation between [C-11]PBR28 V-T in GM and disease activity (DAS28)(r = -0.745, p = 0.002, corrected for rs6971 genotype). Higher serum levels of IFN gamma and TNF-alpha were found in RA patients compared to controls (p < 0.05) and several measures of autonomic activity showed significant differences between RA and controls (p < 0.05). However, no associations between markers of systemic inflammation or autonomic activity and cerebral TSPO binding were found. In conclusion, no statistically significant group differences in TSPO binding as measured with [C-11]PBR28 PET were detected. Within the RA group, lower cerebral TSPO binding was associated with higher disease activity, suggesting that cerebral TSPO expression may be related to disease modifying mechanisms in RA. In light of the earlier confirmed neuro-immune features of RA, these results warrant further investigations regarding neuro-immune joint-to-CNS signalling to open up for potentially new treatment strategies.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 73

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view