SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Farina C.) srt2:(2015-2019)"

Sökning: WFRF:(Farina C.) > (2015-2019)

  • Resultat 1-30 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • 2015
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Bouyoucef, S E, et al. (författare)
  • Poster Session 2 : Monday 4 May 2015, 08
  • 2015
  • Ingår i: European Heart Journal Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2404 .- 2047-2412. ; 16 Suppl 1
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
8.
  • Tinetti, G., et al. (författare)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
9.
  •  
10.
  • Lam, MT, et al. (författare)
  • A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function
  • 2019
  • Ingår i: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 216:12, s. 2778-2799
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemophagocytic lymphohistiocytosis (HLH) is characterized by immune dysregulation due to inadequate restraint of overactivated immune cells and is associated with a variable clinical spectrum having overlap with more common pathophysiologies. HLH is difficult to diagnose and can be part of inflammatory syndromes. Here, we identify a novel hematological/autoinflammatory condition (NOCARH syndrome) in four unrelated patients with superimposable features, including neonatal-onset cytopenia with dyshematopoiesis, autoinflammation, rash, and HLH. Patients shared the same de novo CDC42 mutation (Chr1:22417990C>T, p.R186C) and altered hematopoietic compartment, immune dysregulation, and inflammation. CDC42 mutations had been associated with syndromic neurodevelopmental disorders. In vitro and in vivo assays documented unique effects of p.R186C on CDC42 localization and function, correlating with the distinctiveness of the trait. Emapalumab was critical to the survival of one patient, who underwent successful bone marrow transplantation. Early recognition of the disorder and establishment of treatment followed by bone marrow transplant are important to survival.
  •  
11.
  •  
12.
  •  
13.
  • Biel, W., et al. (författare)
  • Diagnostics for plasma control - : From ITER to DEMO
  • 2019
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 146:A, s. 465-472
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma diagnostic and control (D&C) system for a future tokamak demonstration fusion reactor (DEMO) will have to provide reliable operation near technical and physics limits, while its front-end components will be subject to strong adverse effects within the nuclear and high temperature plasma environment. The ongoing developments for the ITER D&C system represent an important starting point for progressing towards DEMO. Requirements for detailed exploration of physics are however pushing the ITER diagnostic design towards using sophisticated methods and aiming for large spatial coverage and high signal intensities, so that many front-end components have to be mounted in forward positions. In many cases this results in a rapid aging of diagnostic components, so that additional measures like protection shutters, plasma based mirror cleaning or modular approaches for frequent maintenance and exchange are being developed. Under the even stronger fluences of plasma particles, neutron/gamma and radiation loads on DEMO, durable and reliable signals for plasma control can only be obtained by selecting diagnostic methods with regard to their robustness, and retracting vulnerable front-end components into protected locations. Based on this approach, an initial DEMO D&C concept is presented, which covers all major control issues by signals to be derived from at least two different diagnostic methods (risk mitigation).
  •  
14.
  •  
15.
  • D’Andrea, S. D. D., et al. (författare)
  • Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15, s. 2247-2268
  • Tidskriftsartikel (refereegranskat)abstract
    • Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Bergmeister, Konstantin D., et al. (författare)
  • Broadband prosthetic interfaces: Combining nerve transfers and implantable multichannel EMG technology to decode spinal motor neuron activity
  • 2017
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-4548 .- 1662-453X. ; 11, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Modern robotic hands/upper limbs may replace multiple degrees of freedom of extremity function. However, their intuitive use requires a high number of control signals, which current man-machine interfaces do not provide. Here, we discuss a broadband control interface that combines targeted muscle reinnervation, implantable multichannel electromyographic sensors, and advanced decoding to address the increasing capabilities of modern robotic limbs. With targeted muscle reinnervation, nerves that have lost their targets due to an amputation are surgically transferred to residual stump muscles to increase the number of intuitive prosthetic control signals. This surgery re-establishes a nerve-muscle connection that is used for sensing nerve activity with myoelectric interfaces. Moreover, the nerve transfer determines neurophysiological effects, such as muscular hyper-reinnervation and cortical reafferentation that can be exploited by the myoelectric interface. Modern implantable multichannel EMG sensors provide signals from which it is possible to disentangle the behavior of single motor neurons. Recent studies have shown that the neural drive to muscles can be decoded from these signals and thereby the user's intention can be reliably estimated. By combining these concepts in chronic implants and embedded electronics, we believe that it is in principle possible to establish a broadband man-machine interface, with specific applications in prosthesis control. This perspective illustrates this concept, based on combining advanced surgical techniques with recording hardware and processing algorithms. Here we describe the scientific evidence for this concept, current state of investigations, challenges, and alternative approaches to improve current prosthetic interfaces.
  •  
20.
  • Bergmeister, Konstantin D, et al. (författare)
  • Peripheral nerve transfers change target muscle structure and function
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective nerve transfers surgically rewire motor neurons and are used in extremity reconstruction to restore muscle function or to facilitate intuitive prosthetic control. We investigated the neurophysiological effects of rewiring motor axons originating from spinal motor neuron pools into target muscles with lower innervation ratio in a rat model. Following reinnervation, the target muscle's force regenerated almost completely, with the motor unit population increasing to 116% in functional and 172% in histological assessments with subsequently smaller muscle units. Muscle fiber type populations transformed into the donor nerve's original muscles. We thus demonstrate that axons of alternative spinal origin can hyper-reinnervate target muscles without loss of muscle force regeneration, but with a donor-specific shift in muscle fiber type. These results explain the excellent clinical outcomes following nerve transfers in neuromuscular reconstruction. They indicate that reinnervated muscles can provide an accurate bioscreen to display neural information of lost body parts for high-fidelity prosthetic control.
  •  
21.
  • Betancor, Jorge J., et al. (författare)
  • Solutions of Weinstein equations representable by Bessel Poisson integrals of BMO functions
  • 2015
  • Ingår i: Journal of Mathematical Analysis and Applications. - : Elsevier BV. - 0022-247X .- 1096-0813. ; 431:1, s. 440-470
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider the Weinstein type equation L(lambda)u = 0 on (0, infinity) X (0, infinity), where L-lambda= delta(2)(t) + delta-lambda(lambda-1)/x(2), In this paper we characterize the solutions of L(lambda)u = = 0 on (0, infinity) x (0, infinity) representable by Bessel-Poisson integrals of BMO-functions as the ones satisfying certain Carleson properties.
  •  
22.
  • Betancor, Jorge J., et al. (författare)
  • UMD Banach spaces and square functions associated with heat semigroups for Schrödinger, Hermite and Laguerre operators
  • 2016
  • Ingår i: Mathematische Nachrichten. - : Wiley. - 0025-584X .- 1522-2616. ; 289:4, s. 410-435
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we define square functions (also called Littlewood-Paley-Stein functions) associated with heat semigroups for Schrodinger and Laguerre operators acting on functions which take values in UMD Banach spaces. We extend classical (scalar) L-p-boundedness properties for the square functions to our Banach valued setting by using gamma-radonifying operators. We also prove that these L-p-boundedness properties of the square functions actually characterize the Banach spaces having the UMD property.
  •  
23.
  •  
24.
  • De Palma, Adriana, et al. (författare)
  • Predicting bee community responses to land-use changes : effects of geographic and taxonomic biases
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
  •  
25.
  • Luu, Billy L., et al. (författare)
  • Motor unit territories in human genioglossus estimated with multichannel intramuscular electrodes
  • 2018
  • Ingår i: Journal of Applied Physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 124:3, s. 664-671
  • Tidskriftsartikel (refereegranskat)abstract
    • The discharge patterns of genioglossus motor units during breathing have been well-characterized in previous studies, but their localization and territories are not known. In this study, we used two newly developed intramuscular multichannel electrodes to estimate the territories of genioglossus motor units in the anterior and posterior regions of the muscle. Seven healthy men participated. Each electrode contained fifteen bipolar channels, separated by 1 mm, and was inserted percutaneously below the chin, perpendicular to the skin, to a depth of 36 mm. Single motor unit activity was recorded with subjects awake, supine, and breathing quietly through a nasal mask for 180 s. Motor unit territories were estimated from the spike-triggered averages of the electromyographic signal from each channel. A total of 30 motor units were identified: 22 expiratory tonic, 1 expiratory phasic, 2 tonic, 3 inspiratory tonic, and 2 inspiratory phasic. Motor units appeared to be clustered based on unit type, with peak activities for expiratory units predominantly located in the anterior and superficial fibers of genioglossus and inspiratory units in the posterior region. Of these motor unit types, expiratory tonic units had the largest estimated territory, a mean 11.3 mm (SD 1.9). Estimated territories of inspiratory motor units ranged from 3 to 6 mm. In accordance with the distribution of motor unit types, the estimated territory of genioglossus motor units varied along the sagittal plane, decreasing from anterior to posterior. Our findings suggest that genioglossus motor units have large territories relative to the cross-sectional size of the muscle. NEW&NOTEWORTHY In this study, we used a new multichannel intramuscular electrode to address a fundamental property of human genioglossus motor units. We describe the territory of genioglossus motor units in the anterior and posterior regions of the muscle and show a decrease in territory size from anterior to posterior and that expiratory-related motor units have larger estimated territories than inspiratory-related motor units.
  •  
26.
  • Muceli, Silvia, 1981, et al. (författare)
  • A biologically-inspired robust control system for myoelectric control
  • 2017
  • Ingår i: Biosystems & Biorobotics. - Cham : Springer International Publishing. ; , s. 975-979
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • We review recent studies that aimed at designing an intuitive and robust myoelectric control system for transradial amputees. The methods developed assume that the forearm muscles are controlled in a synergistic manner and capture this synergistic structure hidden in the electromyographic signal patterns by factorization algorithms. We have shown that this system is capable of providing robust control over multiple degrees of freedom relying on 6 electrodes only and that it is robust to electrode shift. However, a pure factorization approach may result in some unwanted movements when the user is willing to activate only one function, which is mitigated by combining a synergistic controller with pattern recognition.
  •  
27.
  • Muceli, Silvia, 1981, et al. (författare)
  • Accurate and representative decoding of the neural drive to muscles in humans with multi‐channel intramuscular thin‐film electrodes
  • 2015
  • Ingår i: Journal of Physiology. - 1469-7793 .- 0022-3751. ; 593:17, s. 3789-3804
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the design, fabrication and testing of a novel multi-channel thin-film electrode for detection of the output of motoneurones in vivo and in humans, through muscle signals. The structure includes a linear array of 16 detection sites that can sample intramuscular electromyographic activity from the entire muscle cross-section. The structure was tested in two superficial muscles (the abductor digiti minimi (ADM) and the tibialis anterior (TA)) and a deep muscle (the genioglossus (GG)) during contractions at various forces. Moreover, surface electromyogram (EMG) signals were concurrently detected from the TA muscle with a grid of 64 electrodes. Surface and intramuscular signals were decomposed into the constituent motor unit (MU) action potential trains. With the intramuscular electrode, up to 31 MUs were identified from the ADM muscle during an isometric contraction at 15% of the maximal force (MVC) and 50 MUs were identified for a 30% MVC contraction of TA. The new electrode detects different sources from a surface EMG system, as only one MU spike train was found to be common in the decomposition of the intramuscular and surface signals acquired from the TA. The system also allowed access to the GG muscle, which cannot be analysed with surface EMG, with successful identification of MU activity. With respect to classic detection systems, the presented thin-film structure enables recording from large populations of active MUs of deep and superficial muscles and thus can provide a faithful representation of the neural drive sent to a muscle.
  •  
28.
  • Muceli, Silvia, 1981, et al. (författare)
  • Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted muscle reinnervation
  • 2019
  • Ingår i: Journal of Neural Engineering. - : IOP Publishing. - 1741-2560 .- 1741-2552. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Surface electromyography (EMG) is currently used as a control signal for active prostheses in amputees who underwent targeted muscle reinnervation (TMR) surgery. Recent research has shown that it is possible to access the spiking activity of spinal motor neurons from multi-channel surface EMG. In this study, we propose the use of multi-channel epimysial EMG electrodes as an interface for decoding motor neurons activity following TMR. Approach. We tested multi-channel epimysial electrodes (48 detection sites) built with thin-film technology in an animal model of TMR. Eight animals were tested 12 weeks after reinnervation of the biceps brachii lateral head by the ulnar nerve. We identified the position of the innervation zone and the muscle fiber conduction velocity of motor units decoded from the multi-channel epimysial recordings. Moreover, we characterized the pick-up volume by the distribution of the motor unit action potential amplitude over the epimysium surface. Main results. The electrodes provided high quality signals with average signal-to-noise ratio >30 dB across 95 identified motor units. The motor unit action potential amplitude decreased with increasing distance of the electrode from the muscle fibers (P 0.001). The decrease was more pronounced for bipolar compared to monopolar derivations. The average muscle fiber conduction velocity was 2.46 ± 0.83 m s -1 . Most of the neuromuscular junctions were close to the region where the nerve was neurotized, as observed from the EMG recordings and imaging data. Significance. These results show that epimysial electrodes can be used for selective recordings of motor unit activities with a pick-up volume that included the entire muscle in the rat hindlimb. Epimysial electrodes can thus be used for detecting motor unit activity in muscles with specific fascicular territories associated to different functions following TMR surgery.
  •  
29.
  •  
30.
  • Vujaklija, Ivan, et al. (författare)
  • Prospects of neurorehabilitation technologies based on robust decoding of the neural drive to muscles following targeted muscle reinnervation
  • 2017
  • Ingår i: Biosystems & Biorobotics. - Cham : Springer International Publishing. ; , s. 1359-1363
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Latest advances in neurorehabilitation technologies provide users with reliable mechatronic devices. Nonetheless, the control capabilities of these systems are limited to techniques that rely on indirect measures of neural information using EMG signals. We foresee that the combination of targeted muscle reinnervation (TMR) and high-density EMG electrodes supported by advanced blind source separation techniques (BSS) can substantially enhance current neurorehabilitation solutions. TMR provides access to the nerve activity by connecting nerves to muscles, used as biological amplifiers. Control would benefit from richer information content directly related to spinal motor neuron activity. The motor neuron firing statistics is obtained by applying advanced decomposition algorithms on the multi-channel EMGs from the targeted reinnervated muscles. It is expected that the control of these systems will be more dexterous and precise.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-30 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy