SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Felton J) srt2:(2010-2014)"

Sökning: WFRF:(Felton J) > (2010-2014)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Hudson, Lawrence N., et al. (författare)
  • The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:24, s. 4701-4735
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  •  
4.
  • Maddison, G. P., et al. (författare)
  • Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:7, s. 073016-
  • Tidskriftsartikel (refereegranskat)abstract
    • The former all-carbon wall on JET has been replaced with beryllium in the main torus and tungsten in the divertor to mimic the surface materials envisaged for ITER. Comparisons are presented between type I H-mode characteristics in each design by examining respective scans over deuterium fuelling and impurity seeding, required to ameliorate exhaust loads both in JET at full capability and in ITER. Attention is focused upon a common high-triangularity, single-null divertor configuration at 2.5 MA, q(95) approximate to 3.5 yielding the most robust all-C performance. Contrasting results between the alternative linings are found firstly in unseeded plasmas, for which purity is improved and intrinsic radiation reduced in the ITER-like wall (ILW) but normalized energy confinement is approximate to 30% lower than in all-C counterparts, owing to a commensurately lower (electron) pedestal temperature. Divertor recycling is also radically altered, with slower, inboard-outboard asymmetric transients at ELMs and spontaneous oscillations in between them. Secondly, nitrogen seeding elicits opposite responses in the ILW to all-C experience, tending to raise plasma density, reduce ELM frequency, and above all to recover (electron) pedestal pressure, hence global confinement, almost back to previous levels. A hitherto unrecognized role of light impurities in pedestal stability and dynamics is consequently suggested. Thirdly, while heat loads on the divertor outboard target between ELMs are successfully reduced in proportion to the radiative cooling and ELM frequency effects of N in both wall environments, more surprisingly, average power ejected by ELMs also declines in the same proportion for the ILW. Detachment between transients is simultaneously promoted. Finally, inter-ELM W sources in the ILW divertor tend to fall with N input, although core accumulation possibly due to increased particle confinement still leads to significantly less steady conditions than in all-C plasmas. This limitation of ILW H-modes so far will be readdressed in future campaigns to continue progress towards a fully integrated scenario suitable for D-T experiments on JET and for 'baseline' operation on ITER. The diverse changes in behaviour between all-C and ILW contexts demonstrate essentially the strong impact which boundary conditions and intrinsic impurities can have on tokamak-plasma states.
  •  
5.
  • Giroud, C., et al. (författare)
  • Integration of a radiative divertor for heat load control into JET high triangularity ELMy H-mode plasmas
  • 2012
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 52:6, s. 063022-
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments on JET with a carbon-fibre composite wall have explored the reduction of steady-state power load in an ELMy H-mode scenario at high Greenwald fraction similar to 0.8, constant power and close to the L to H transition. This paper reports a systematic study of power load reduction due to the effect of fuelling in combination with seeding over a wide range of pedestal density ((4-8) x 10(19) m(-3)) with detailed documentation of divertor, pedestal and main plasma conditions, as well as a comparative study of two extrinsic impurity nitrogen and neon. It also reports the impact of steady-state power load reduction on the overall plasma behaviour, as well as possible control parameters to increase fuel purity. Conditions from attached to fully detached divertor were obtained during this study. These experiments provide reference plasmas for comparison with a future JET Be first wall and an all W divertor where the power load reduction is mandatory for operation.
  •  
6.
  • Webster, A. J., et al. (författare)
  • Time-resonant tokamak plasma edge instabilities?
  • 2014
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 56:7, s. 075017-
  • Tidskriftsartikel (refereegranskat)abstract
    • For a two week period during the Joint European Torus 2012 experimental campaign, the same high confinement plasma was repeated 151 times. The dataset was analysed to produce a probability density function (pdf) for the waiting times between edge-localized plasma instabilities (ELMs). The result was entirely unexpected. Instead of a smooth single peaked pdf, a succession of 4-5 sharp maxima and minima uniformly separated by 7-8 ms intervals was found. Here we explore the causes of this newly observed phenomenon, and conclude that it is either due to a naturally occurring self-organized plasma phenomenon or an interaction between the plasma and a real-time control system. If the maxima are a result of 'resonant' frequencies at which ELMs can be triggered more easily, then future ELM control techniques can, and probably will, use them. Either way, these results demand a deeper understanding of the ELM process.
  •  
7.
  • Graves, J. P., et al. (författare)
  • Sawtooth control in JET with ITER relevant low field side resonance ICRH and ITER like wall
  • 2014
  • Ingår i: 41st EPS Conference on Plasma Physics, EPS 2014. - : European Physical Society (EPS).
  • Konferensbidrag (refereegranskat)abstract
    • New experiments at JET with the ITER like wall show for the first time that ITER-relevant low field side resonance first harmonic ICRH with can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous [J. P. Graves et al, Nature Communs 3, 624 (2012)] high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, NTMs and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings, and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-MHD stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.
  •  
8.
  •  
9.
  • Graves, J. P., et al. (författare)
  • Experimental verification of sawtooth control by energetic particles in ion cyclotron resonance heated JET tokamak plasmas
  • 2010
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 50:5, s. 052002-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Experimental evidence from the JET tokamak is presented supporting the predictions of a recent theory (Graves et al 2009 Phys. Rev. Lett. 102 065005) on sawtooth instability control by toroidally propagating ion cyclotron resonance waves. Novel experimental conditions minimized a possible alternate effect of magnetic shear modification by ion cyclotron current drive, and enabled the dependence of the new energetic ion mechanism to be tested over key variables. The results have favourable implications on sawtooth control by ion cyclotron resonance waves in a fusion reactor.
  •  
10.
  •  
11.
  • Lerche, E., et al. (författare)
  • Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:7, s. 074008-
  • Tidskriftsartikel (refereegranskat)abstract
    • Two ion cyclotron range of frequencies ( ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas-fundamental H majority and second harmonic He-3 ICRF heating-were recently investigated in JET. Although the same magnetic field and RF frequencies (f approximate to 42 MHz and f approximate to 52 MHz, respectively) were used, the density and particularly the plasma temperature were lower than those expected in the initial phase of ITER. Unlike for the well-performing H minority heating scheme to be used in He-4 plasmas, modest heating efficiencies (n = P-absorbed/P-launched < 40%) with dominant electron heating were found in both H plasma scenarios studied, and enhanced plasma-wall interaction manifested by high radiation losses and relatively large impurity content in the plasma was observed. This effect was stronger in the He-3 ICRF heating case than in the H majority heating experiments and it was verified that concentrations as high as similar to 20% are necessary to observe significant ion heating in this case. The RF acceleration of the heated ions was modest in both cases, although a small fraction of the 3He ions reached about 260 keV in the second harmonic He-3 heating experiments when 5MW of ICRF power was applied. Considerable RF acceleration of deuterium beam ions was also observed in some discharges of the He-3 heating experiments (where both the second and third harmonic ion cyclotron resonance layers of the D ions are inside the plasma) whilst it was practically absent in the majority hydrogen heating scenario. While hints of improved RF heating efficiency as a function of the plasma temperature and plasma dilution (with He-4) were confirmed in the H majority case, the He-3 concentration was the main handle on the heating efficiency in the second harmonic He-3 heating scenario.
  •  
12.
  • Lerche, E., et al. (författare)
  • Optimizing ion-cyclotron resonance frequency heating for ITER : dedicated JET experiments
  • 2011
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 53:12, s. 124019-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Lin, Y., et al. (författare)
  • Ion cyclotron range of frequency mode conversion flow drive in D(He-3) plasmas on JET
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:7, s. 074001-
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion cyclotron range of frequency (ICRF) mode conversion has been shown to drive toroidal flow in JET D(He-3) L-mode plasmas: B-t0 = 3.45 T, n(e0) similar to 3x10(19) m(-3), I-p = 2.8 and 1.8 MA, P-RF <= 3MW at 33MHz and -90 degrees phasing. Central toroidal rotation in the counter-I-p direction, with omega(phi 0) up to 10 krad s(-1) (V-phi 0 similar to 30 km s(-1), central thermal Mach number M-th(0) similar to 0.07 and Alfven Mach number M-A(0) similar to 0.003) has been observed. The flow drive effect is sensitive to the He-3 concentration and the largest rotation is observed in the range X[He-3] = n(He3)/n(e) similar to 10-17%. The rotation profile is peaked near the magnetic axis, and the central rotation scales with the input RF power. The effective torque density profile from the RF power has been calculated and the total torque is estimated to be as high as 50% of the same power from neutral beam injection, and a factor of 5 larger than the direct momentum injection from the RF waves. RF physics modeling using the TORIC code shows that the interaction between the mode converted ion cyclotron wave and the He-3 ions, and associated asymmetry in space and momentum, may be key for flow drive.
  •  
17.
  • Van Eester, D., et al. (författare)
  • Enhancing the mode conversion efficiency in JET plasmas with multiple mode conversion layers
  • 2011
  • Ingår i: AIP Conf. Proc.. - : AIP. - 1551-7616 .- 0094-243X. - 9780735409781 ; , s. 301-308
  • Konferensbidrag (refereegranskat)abstract
    • The constructive interference effect described by Fuchs et al. [1] shows that the mode conversion and thereby the overall heating efficiency can be enhanced significantly when an integer number of fast wave wavelengths can be folded in between the high field side fast wave cutoff and the ion-ion hybrid layer(s) at which the ion Bernstein or ion cyclotron waves are excited. This effect was already experimentally identified in ( 3He)-D plasmas [2] and was recently tested in ( 3He)-H JET plasmas. The latter is an 'inverted' scenario, which differs significantly from the ( 3He)-D scenarios since the mode-conversion layer is positioned between the low field side edge of the plasma and the ion-cyclotron layer of the minority 3He ions (whereas the order in which a wave entering the plasma from the low field side encounters these layers is inverted in a 'regular' scenario), and because much lower 3He concentrations are needed to achieve the mode-conversion heating regime. The presence of small amounts of 4He and D in the discharges gave rise to an additional mode conversion layer on top of the expected one associated with 3He-H, which made the interpretation of the results more complex but also more interesting: Three different regimes could be distinguished as a function of X[ 3He], and the differing dynamics at the various concentrations could be traced back to the presence of these two mode conversion layers and their associated fast wave cutoffs. Whereas (1-D and 2-D) numerical modeling yields quantitative information on the RF absorptivity, recent analytical work by Kazakov [3] permits to grasp the dominant underlying wave interaction physics.
  •  
18.
  • Van Eester, D., et al. (författare)
  • Minority and mode conversion heating in (He-3)-H JET plasmas
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:7, s. 074009-
  • Tidskriftsartikel (refereegranskat)abstract
    • Radio frequency (RF) heating experiments have recently been conducted in JET (He-3)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (He-3)-H plasmas at full field, with fundamental cyclotron heating of He-3 as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the He-3 concentration were observed and mode conversion (MC) heating proved to be as efficient as He-3 minority heating. The unwanted presence of both He-4 and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the He-3 concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[He-3]: (i) a regime at low concentration (X[He-3] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[He-3] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at He-3 concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[He-3] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2 MC layers and their associated FW cutoffs residing inside the plasma at low He-3 concentration. One of these layers is approaching and crossing the low-field side plasma edge when 1.8 < X[He-3] < 5%. Adopting a minimization procedure to correlate the MC positions with the plasma composition reveals that the different behaviors observed are due to contamination of the plasma. Wave modeling not only supports this interpretation but also shows that moderate concentrations of D-like species significantly alter the overall wave behavior in He-3-H plasmas. Whereas numerical modeling yields quantitative information on the heating efficiency, analytical work gives a good description of the dominant underlying wave interaction physics.
  •  
19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy