SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fenton A) srt2:(2005-2009)"

Sökning: WFRF:(Fenton A) > (2005-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kalaaji, M., et al. (författare)
  • Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis
  • 2007
  • Ingår i: Kidney International. - : Elsevier BV. - 1523-1755 .- 0085-2538. ; 71:7, s. 664-672
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibodies to double-stranded (dsDNA) are associated with systemic lupus erythematosus (SLE) and directly involved in human lupus nephritis. Information about their glomerular target antigens is inconsistent, and whether availability of target antigens, antibody specificity or avidity are nephritogenic parameters, is not determined. In this study, we analyzed renal tissue from anti-dsDNA antibody-positive lupus patients with nephritis by morphological and immunological assays, including immune electron microscopy (IEM) and colocalization IEM, an EM-based confocal microscopy assay. IEM demonstrated that antibody deposits were confined to electron dense structures (EDS) in glomerular membranes. These autoantibodies colocalized with nucleosome-binding anti-dsDNA/-histone/-transcription factor antibodies. To confirm the colocalization IEM-data, we developed a colocalization terminal deoxynucleotidyltransferase (TdT) biotin-dUTP nicked end-labeled (TUNEL) IEM assay where extracellular DNA was traced by TdT-mediated introduction of biotinylated nucleotides and autoantibodies by IEM. Results consistently demonstrated that DNA colocalized with autoantibodies in glomerular membrane-associated EDS. The colocalization IEM and colocalization TUNEL IEM assays thus demonstrate that intra-glomerular membrane-associated nucleosomes are targeted by anti-dsDNA autoantibodies in human lupus nephritis. The data provide a new approach to understand basic molecular and immunological processes accounting for antibody-mediated nephritis in human SLE.
  •  
2.
  • Rebholz, H, et al. (författare)
  • Receptor association and tyrosine phosphorylation of S6 kinases
  • 2006
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X. ; 273:9, s. 2023-2036
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribosomal protein S6 kinase (S6K) is activated by an array of mitogenic stimuli and is a key player in the regulation of cell growth. The activation process of S6 kinase involves a complex and sequential series of multiple Ser/Thr phosphorylations and is mainly mediated via phosphatidylinositol 3-kinase (PI3K)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and mTor-dependent pathways. Upstream regulators of S6K, such as PDK1 and protein kinase B (PKB/Akt), are recruited to the membrane via their pleckstrin homology (PH) or protein-protein interaction domains. However, the mechanism of integration of S6K into a multi-enzyme complex around activated receptor tyrosine kinases is not clear. In the present study, we describe a specific interaction between S6K with receptor tyrosine Such as platelet-derived growth factor receptor (PDGFR). The kinases, interaction with PDGFR is mediated via the kinase or the kinase extension domain of S6K. Complex formation is inducible by growth factors and leads to S6K tyrosine phosphorylation. Using PDGFR mutants, we have shown that the phosphorylation is exerted via a PDGFR-src pathway. Furthermore, src kinase phosphorylates and coimmunoprecipitates with S6K in vivo. Inhibitors towards tyrosine kinases, such as genistein and PP1, or src-specific SU6656, but not PI3K and mTor inhibitors, lead to a reduction in tyrosine phosphorylation of S6K. In addition, we mapped the sites of tyrosine phosphorylation in S6K1 and S6K2 to Y39 and Y45, respectively. Mutational and immunofluorescent analysis indicated that phosphorylation of S6Ks at these sites does not affect their activity or subcellular localization. Our data indicate that S6 kinase is recruited into a complex with RTKs and src and becomes phosphorylated on tyrosine/s in response to PDGF or serum.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy