SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fitzgerald Rebecca) srt2:(2007-2009)"

Sökning: WFRF:(Fitzgerald Rebecca) > (2007-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Wall, Rebecca, 1979-, et al. (författare)
  • Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract
  • 2007
  • Ingår i: FEMS Microbiology Ecology. - Oxon, United Kingdom : Blackwell Publishing. - 0168-6496 .- 1574-6941. ; 59:1, s. 127-137
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study was to investigate the cultivable Lactobacillus population in adult and infant faecal material to identify strains shared across a number of individuals. A range of lactobacilli isolated on Lactobacillus-selective agar from faeces of 16 infants and 11 adults were genetically fingerprinted and further characterized by 16S rRNA gene sequencing. The relatedness of all the Lactobacillus strains isolated to known species was also determined both genetically and phenotypically. This study revealed that the human intestine is initially colonized by only a few (1-2) different cultivable strains whereas in adults the pattern becomes more complex with a higher diversity of strains. The adult samples contained three genetically distinct Lactobacillus strains in some cases, while infant samples generally harboured only one dominant Lactobacillus strain. Moreover, the species in general appeared to differ with Lactobacillus rhamnosus and Lactobacillus casei/paracasei found mainly in adults, whereas Lactobacillus gasseri and Lactobacillus salivarius were more commonly isolated in infant samples. The data reaffirm the differences in Lactobacillus populations both between individual subjects and between the infant and adult, with an overall change in the diversity and complexity from early stages of life to adulthood.
  •  
3.
  • Wall, Rebecca, 1979-, et al. (författare)
  • Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues
  • 2009
  • Ingår i: American Journal of Clinical Nutrition. - Bethesda, USA : American Society for Nutrition. - 0002-9165 .- 1938-3207. ; 89:5, s. 1393-1401
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent reports suggest that the metabolic activity of the gut microbiota may contribute to the pathogenesis of obesity and hepatic steatosis.Objective: The objective was to determine whether the fat composition of host tissues might be influenced by oral administration of commensal bifidobacteria previously shown by us to produce bioactive isomers of conjugated linoleic acid (CLA).Design: Murine trials were conducted in which linoleic acid-supplemented diets were fed with or without Bifidobacterium breve NCIMB 702258 (daily dose of 10(9) microorganisms) to healthy BALB/c mice and to severe combined immunodeficient mice for 8-10 wk. To ensure that the observations were not peculiar to mice, a similar trial was conducted in weanling pigs over 21 d. Tissue fatty acid composition was assessed by gas-liquid chromatography.Results: In comparison with controls, there was an increase in cis-9, trans-11 CLA in the livers of the mice and pigs after feeding with linoleic acid in combination with B. breve NCIMB 702258 (P < 0.05). In addition, an altered profile of polyunsaturated fatty acid composition was observed, including higher concentrations of the omega-3 (n-3) fatty acids eicosapentaenoic acid and docosahexaenoic acid in adipose tissue (P < 0.05). These changes were associated with reductions in the proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma (P < 0.05).Conclusions: These results are consistent with the concept that the metabolome is a composite of host and microbe metabolic activity and that the influence of the microbiota on host fatty acid composition can be manipulated by oral administration of CLA-producing microorganisms.
  •  
4.
  • Wall, Rebecca, et al. (författare)
  • Presence of two Lactobacillus and Bifidobacterium probiotic strains in the neonatal ileum
  • 2008
  • Ingår i: The ISME Journal. - New York, USA : Nature Publishing Group. - 1751-7362 .- 1751-7370. ; 2:1, s. 83-91
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall purpose of this study was to examine the lactobacilli and bifidobacteria microbiota in the human ileum at a very early stage of life. Ileostomy effluents from two infants, taken at different time points, were plated on Lactobacillus selective agar and cys-MRS containing mupirocin to select for bifidobacteria. In one case, a stool sample following ileostomy reversal was subsequently analyzed microbiologically. Pulse-field gel electrophoresis and 16S rRNA sequencing was used to investigate the cultivable population of bifidobacteria and lactobacilli and denaturing gradient gel electrophoresis (DGGE) to examine the non-cultivable population. The probiotic strain, Lactobacillus paracasei NFBC 338, was recovered at both time points from one of the infants and dominated in the small intestine for a period of over 3 weeks. Moreover, the probiotic strain, B. animalis subsp. lactis Bb12, was obtained from the other infant. This study shows the presence of two known probiotic strains in the upper intestinal tract at an early stage of human life and thus provides some evidence for their ability to colonize the infant small intestine.
  •  
5.
  • Wall, Rebecca, 1979-, et al. (författare)
  • Role of gut microbiota in early infant development
  • 2009
  • Ingår i: Clinical Medicine. - : Sage Publications. - 1178-220X. ; 3, s. 45-54
  • Forskningsöversikt (refereegranskat)abstract
    • Early colonization of the infant gastrointestinal tract is crucial for the overall health of the infant, and establishment and maintenance of non-pathogenic intestinal microbiota may reduce several neonatal inflammatory conditions. Much effort has therefore been devoted to manipulation of the composition of the microbiota through 1) the role of early infant nutrition, particularly breast milk, and supplementation of infant formula with prebiotics that positively influence the enteric microbiota by selectively promoting growth of beneficial bacteria and 2) oral administration of probiotic bacteria which when administered in adequate amounts confer a health benefit on the host. While the complex microbiota of the adult is difficult to change in the long-term, there is greater impact of the diet on infant microbiota as this is not as stable as in adults. Decreasing excessive use of antibiotics and increasing the use of pre- and probiotics have shown to be beneficial in the prevention of several important infant diseases such as necrotizing enterocolitis and atopic eczema as well as improvement of short and long-term health. This review addresses how the composition of the gut microbiota becomes established in early life, its relevance to infant health, and dietary means by which it can be manipulated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy