SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Francis Matthew Professor) "

Search: WFRF:(Francis Matthew Professor)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Farag, Salah I., 1959- (author)
  • Biogenesis, function and regulation of the type III secretion translocon of Yersinia pseudotuberculosis
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Many Gram negative bacteria use type III secretion systems to cross-talk with eukaryotic cells. Type III secretion system assembly and function is tightly regulated. It initiates with assembly of a basal body-like structure, and is followed by a cytoplasmic-located substrate sorting and export platform that first engages with early substrates required for needle assembly. At the needle tip, a translocon is formed upon eukaryotic cell contact to allow the translocation of effector proteins to the host cell. The focus of this thesis is on understanding aspects of biogenesis, regulation and function of the translocon and its interaction with the host cell. Research questions are addressed in enteropathogenic Yersinia pseudotuberculosis model.Prioritising the secretion of translocon components before effector proteins is a task given partly to the InvE/MxiC/HrpJ family of proteins. In Yersinia, homology to this protein family is partitioned over two proteins; YopN and TyeA. Certain Yersinia strains naturally produce a single YopN/TyeA polypeptide hybrid. To understand the implications of hybrid formation towards type III secretion control, a series of mutants were engineered to produce only a single hybrid peptide. Using in vitro assays revealed no difference in substrate secretion profiles between parent and mutants. Moreover, no obvious prioritisation of secretion between translocator and effector substrates was observed. Although these in vitro studies indicate that the YopN-TyeA single polypeptide is fully functionally competent, these mutants were attenuated in the mouse infection model. Hence, natural production of YopN and TyeA as a single polypeptide alone is unlikely to confer a fitness advantage to the infecting bacteria and is unlikely to orchestrate hierarchal substrate secretion.The YopB and YopD translocon components form a pore in the host cell plasma membrane to deliver the effectors into the host cell. To better understand how YopD contributes to the biogenesis, function and regulation of the translocon pore, a series of mutants were constructed to disrupt two predicted α-helix motifs, one lying at the N-terminus and the other at the C-terminus. Based upon phenotypes associated with environmental control of Yop synthesis and secretion, effector translocation, evasion of phagocytosis, killing of immune cells and virulence in a mouse infection model, the mutants were grouped into three phenotypic classes. A particularly interesting mutant class maintained full T3SS function in vitro, but were attenuated for virulence in a murine oral-infection model. To better understand the molecular basis for these phenotypic differences, the effectiveness of RAW 264.7 cells to respond to infection by these mutants was scrutinised. Sixteen individual cytokines were profiled with mouse cytokine screen multiplex analysis. Signature cytokine profiles were observed that could again separate the different YopD mutants into distinct categories. The activation and supression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to modulate programmed cell death and antiphagocytosis pathways. Hence, the biogenesis of sub-optimal translocon pores alters host cell responsiveness and limits the ability of Yersinia to fortify against attack by both early and late arms of the host innate immune response.The amount of bacteria now resistant to multiple antibiotics is alarming. By providing insights into a common virulence process, this work may ultimately facilitate the design of novel broad-acting inhibitors of type III secretion, and thereby be useful to treat an array of bacterial infections.
  •  
2.
  • Gurung, Jyoti Mohan, 1984- (author)
  • Coordinating type III secretion system biogenesis in Yersinia pseudotuberculosis
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Various Gram-negative bacteria utilize type III secretion system (T3SS) to deliver effectors into eukaryotic host cells and establish mutualistic or pathogenic interactions. An example is the Ysc-Yop T3SS of pathogenic Yersinia species. The T3SS resembles a molecular syringe with a wide cylindrical membrane-spanning basal body that scaffolds a hollow extracellular needle with a pore-forming translocon complex crowned at the needle tip. Together they form a continuous conduit between bacteria and host cells that allow delivery of effector proteins. Dedicated actions of cytoplasmic chaperones, regulators and components of the cytoplasmic complex orchestrates hierarchical assembly of T3SS. On the basis of secretion hierarchy, proteins can be categorized as ‘early’ needle complex proteins, ‘middle’ translocators and ‘late’ Yop effectors. However, how the system recognizes, prepares and mediates temporal delivery of T3S substrates is not fully understood. Herein, we have investigated the roles of YscX and YscY (present specifically in the Ysc family of T3SS), as well as YopN-TyeA (broadly distributed among T3SS families) to provide a better understanding of some of the molecular mechanisms governing spatiotemporal control of T3SS assembly.Despite reciprocal YscX-YscY binary and YscX-YscY-SctV ternary interactions between the member proteins, functional interchangeability in Yersinia was not successful. This revealed YscX and YscY must perform functions unique to Yersinia T3SS. Defined domain swapping and site-directed mutagenesis identified two highly conserved cysteine residues important for YscX function. Moreover, the N-terminal region of YscX harboured an independent T3S signal. Manipulating the YscX N-terminus by exchanging it with equivalent secretion signals from different T3S substrates abrogated T3S activity. This was explained by the need for the YscX N-terminus to correctly localize and/or assemble the ‘early’ SctI inner adapter and SctF needle protein. Therefore, N-terminal YscX performs dual functions; one as a secretion signal and the other as a structural signal to control early stage assembly of T3SS.In Ysc-Yop T3SS, YopN-TyeA complex is involved in the later stage of T3SS assembly, inhibiting Yops secretion until host cell contact is achieved. Analysis of the YopN C-terminus identified a specific domain stretching 279-287 critical for regulating Ysc-Yop T3SS activity. The regulation was mediated by specific hydrophobic contacts between W279 of YopN and F8 of TyeA.In conclusion, this work has provided novel molecular mechanisms regarding  the spatiotemporal assembly of T3SS. While the N-terminal region of YscX contributes to the early stage of T3SS assembly, the C-terminal region of YopN is critical for regulating Ysc-Yop activity at a later stage of T3SS assembly.
  •  
3.
  • Mahmud, A. K. M. Firoj, 1980- (author)
  • Molecular mechanisms of Yersinia pseudotuberculosis for adaptation and establishment of infection in host tissue
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • Bacterial pathogens can evade the host’s immune defence to adapt and establish an infection within the host. Some even slip into a quiescent state to establish themselves without acutely harming the host. Phylogenetically unrelated bacteria can share similar strategies for the establishment of infection and for persistence. Our lab previously showed that Yersinia pseudotuberculosis underwent a dramatic reprogramming from a virulent phenotype expressing virulence genes, including T3SS and Yop effectors during early infection, to an adapted phenotype capable of persisting in tissue. The overall aim of my PhD study was to dissect the mechanisms behind bacterial adaptation and maintenance of infection within host tissue using Y. pseudotuberculosis as a model pathogen. The ultimate goal is to identify key players of critical importance for the ability of the bacterium to maintain and establish infection in host tissue. In my studies, I mainly focused on bacterial biofilm and the role of the alternative sigma factor RpoN. Much of my studies involve RNA-Seq analyses, encouraging me to develop a convenient, time-efficient, and all-purpose RNA-Seq data analysis package especially designed for prokaryotic organisms. The package is available online as a free tool and can be used by any biologist with minimal computational knowledge. We systematically examined biofilm formation of Y. pseudotuberculosis under different stress conditions and found that biofilm development involved a series of adaptive responses against various stressors, including bile, pH, amino acid deprivation, and temperature and oxygen-level changes. Analyses of transcription profiles of bacteria forming biofilm in different conditions revealed a set of core genes that were similarly regulated in biofilm bacteria independently of induced environment. The transcriptional regulator RpoN, commonly known as sigma 54, was found to be important for biofilm formation, and a ∆rpoN mutant strain was severely attenuated in virulence. To understand the regulatory mechanisms involved, we investigated gene expressions in wild-type (WT) and the isogenic ∆rpoN mutant strain and also chromatin immunoprecipitation followed by sequencing. We have identified RpoN binding sites in the Y. pseudotuberculosis genome and revealed a complex regulation by RpoN involving both activation and repression effects. We also investigated the role of RpoN in regulation of the Type III secretion system (T3SS) and found that RpoN was required for a functional T3SS, which is essential for bacterial virulence properties in host tissue. Our work indicates that Yersinia modulates itself in multiple ways to create niches favourable to growth and survival in the host environment. We have identified some key regulators and genes that will be explored further for their potential as novel targets for the development of new antibiotics.
  •  
4.
  • Wirebrand, Lisa, 1986- (author)
  • Global regulatory factors that impact metabolic and lifestyle choices in Pseudomonas putida
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Pseudomonas putida strains have a broad metabolic capacity and are innately resistant to many harmful substances – properties that make them of interest for a number of industrial and biotechnological application. They can rapidly adapt to changes in physico-chemical parameters in the soil and water environments they naturally inhabit. Like other bacteria, they have evolved both specific and cross-acting global regulatory circuits to control endurance traits and life style choices in order to survive. Three such survival tactics are 1) the ability to control flagella-mediated motility to search for metabolically favourable locations, 2) to produce protective biofilm structures to resist environmental insults, and 3) to distinguish the energetically most favourable carbon source amongst an array on offer. These processes are often co-ordinated regulated by intersecting networks that are controlled by global signalling molecules (second messengers) such as the nucleotides ppGpp and c-di-GMP, and globally acting proteins.In the first part of my thesis I present evidence that the PP4397 protein of P. putida is responsible for slowing down flagella-driven motility in response to c-di-GMP signalling from a dual-functional c-di-GMP turnover protein termed PP2258. This connection is expanded upon to present a potential signal transduction pathway from a surface located receptor to PP2258 and the c-di-GMP responsive PP4397 protein, and from there to the flagella motors to determine flagella performance. The transcriptional regulatory studies that accompany this work suggest a means by which transcriptional control may serve to initiate a co-ordinated blocking of de novo flagella biogenesis and slowing-down flagella rotation – two processes needed to enter the biofilm mode of growth. Exiting from a biofilm matrix is also a c-di-GMP elicited behaviour, prompted when nutrients become scarce. In my second piece of work I present evidence that hunger-signals in the form of ppGpp directly control transcription to elevate the levels of a c-di-GMP degrading protein – BifA – which lies at the heart of programed biofilm dispersal. The final part of my thesis, concerns how the global regulatory proteins Hfq and Crc act at multiple levels to subvert catabolism of phenolics to favour other preferred sources of carbon. Evidence is presented that this involves a two-tiered translational repression – one at the level of the master regulator of the system, and another at the level of the catabolic enzymes. This study also revealed a hitherto unsuspected role of Crc in maintenance of an IncP-2 plasmid within a bacterial population. This latter finding has implications for a wide variety of processes encoded by the IncP-2 group of Pseudomonas-specific mega-plasmids.
  •  
5.
  • Amer, Ayad, 1980- (author)
  • Controlling substrate export by the Ysc-Yop type III secretion system in Yersinia
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • Several pathogenic Gram-negative bacteria invest in sophisticated type III secretion systems (T3SS) to incapacitate their eukaryotic hosts. T3SSs can secrete protein cargo outside the bacterial cell and also target many of them into the eukaryotic cell interior. Internalized proteins promote bacterial colonization, survival and transmission, and can often cause severe disease. An example is the Ysc-Yop T3SS apparatus assembled by pathogenic Yersinia spp. A correctly assembled Ysc-Yop T3SS spans the Yersinia envelope and also protrudes from the bacterial surface. Upon host cell contact, this system is competent to secrete hydrophobic translocators that form a translocon pore in the host cell membrane to complete the delivery channel bridging both bacterial and host cells. Newly synthesized effector Yops may pass through this channel to gain entry into the host cell cytosol.As type III secretion (T3S) substrates function sequentially during infection, it is hypothesized that substrate export is temporally controlled to ensure that those required first are prioritized for secretion. On this basis three functional groups are classified as early (i.e. structural components), middle (i.e. translocators) and late (i.e. effectors). Factors considered to orchestrate the T3S of substrates are many, including the intrinsic substrate secretion signal sequences, customized chaperones, and recognition/sorting platforms at the base of the assembled T3SS. Investigating the interplay between these elements is critical for a better understanding of the molecular mechanisms governing export control during Yersinia T3S.To examine the composition of the N-terminal T3S signals of the YscX early substrate and the YopD middle substrate, these segments were altered by mutagenesis and the modified substrates analyzed for their T3S. Translational fusions between these signals and a signalless β-Lactamase were used to determine their optimal length required for efficient T3S. This revealed that YscX and YopD export is most efficiently supported by their first 15 N-terminal residues. At least for YopD, this is a peptide signal and not base upon information in the mRNA sequence. Moreover, features within and upstream of this segment contribute to their translational control. In parallel, bacteria were engineered to produce substrate chimeras where the N-terminal segments were exchanged between substrates of different classes in an effort to examine the temporal dynamics of T3S. In several cases, Yersinia producing chimeric substrates were defective in T3S activity, which could be a consequence of disturbing a pre-existing hierarchal secretion mechanism.YopN and TyeA regulatory molecules can be naturally produced as a 42 kDa YopN-TyeA hybrid, via a +1 frame shift event somewhere at the 5’-end of yopN. To study this event, Yersinia were engineered to artificially produce this hybrid, and these maintained in vitro T3S control of both middle and late substrates. However, modestly diminished directed targeting of effectors into eukaryotic cells correlated to virulence attenuation in vivo. Upon further investigation, a YopN C-terminal segment encompassing residues 278 to 287 was probably responsible, as this region is critical for YopN to control T3S, via enabling a specific interaction with TyeA.Investigated herein were molecular mechanisms to orchestrate substrate export by the T3SS of Yersinia. While N-terminal secretion signals may contribute to specific substrate order, the YopN and TyeA regulatory molecules do not appear to distinguish between the different substrate classes.
  •  
6.
  • Edqvist, Petra J, 1975- (author)
  • Multiple twists in the molecular tales of YopD and LcrH in type III secretion by Yersinia pseudotuberculosis
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • The type III secretion system (T3SS) is a highly conserved secretion system among Gram negative bacteria that translocates anti-host proteins directly into the infected cells to overcome the host immune system and establish a bacterial infection. Yersinia pseudotuberculosis is one of three pathogenic Yersinia spp. that use a plasmid encoded T3SS to establish an infection. This complex multi-component Ysc-Yop system is tightly regulated in time and space. The T3SS is induced upon target cell contact and by growth in the absence of calcium. There are two kinds of substrates for the secretion apparatus, the translocator proteins that make up the pore in the eukaryotic target cell membrane, and the translocated effector proteins, that presumably pass through this pore en route to the eukaryotic cell interior.The essential YopD translocator protein is involved in several important steps during effector translocation, such as pore formation, effector translocation. Moreover, in complex with its cognate chaperone LcrH, it maintains regulatory control of yop gene expression. To understand the molecular mechanism of YopD function, we made sequential in-frame deletions throughout the entire protein and identified discrete functional domains that made it possible to separate the role of YopD in translocation from its role in pore formation and regulation, really supporting translocation to be a multi-step process. Further site-directed mutagenesis of the YopD C-terminus, a region important for these functions, revealed no function for amino acids in the coiled-coil domain, while hydrophobic residues within the alpha-helical amphipathic domain are functionally significant for regulation, pore formation and translocation of effectors.Unique to the T3SSs are the chaperones which are required for efficient type III protein secretion. The translocator-class chaperone LcrH binds two translocator proteins, YopB and YopD, which is necessary for their pre-secretory stabilization and their efficient secretion. We have shown that LcrH interacts with each translocator at a unique binding-site established by the folding of its three tandem tetratricopeptide repeats (TPRs). Beside the regulatory LcrH-YopD complex, LcrH complexes with YscY, a component of the Ysc-Yop T3SS, that is also essential for regulatory control. Interestingly the roles for LcrH do not end here, because it also appears to function in fine tuning the amount of effector translocation into target cells upon cell contact. Moreover, LcrH’s role in pre-secretory stability appears to be an in vitro phenomenon, since upon bacteria-host cell contact we found accumulated levels of YopB and YopD inside the bacteria in absence of a LcrH chaperone. This suggests the true function of LcrH is seen during target cell contact. In addition, these stable YopB and YopD are secreted in a Ysc-Yop independent manner in absence of a functional LcrH. We propose a role for LcrH in conferring substrate secretion pathway specificity, guiding its substrate to the cognate Ysc-Yop T3SS to secure subsequent effector translocation.Together, this work has sought to better understand the key functions of LcrH and YopD in Yersinia pathogenicity. Using an approach based heavily on recombinant DNA technology and tissue culture infections, the complex molecular cross-talk between chaperone and its substrate, and the effect this has on the Yersinia lifestyle, are now being discovered.
  •  
7.
  • Eriksson, Olaspers Sara, 1985- (author)
  • Pathogenic Neisseria : Single cell motility, multicellular dynamics and antimicrobial susceptibility
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • Neisseria meningitidis and Neisseria gonorrhoeae can colonize humans without causing any symptoms. However, gonorrhea and invasive meningococcal disease are serious health concerns. An essential virulence factor for neisserial adhesion to host cells, twitching motility and microcolony formation/aggregation is the retractile type IV pili (Tfp). The scope of this thesis stretches from the motility of single Neisseria cells, via the multicellular dynamics of N. meningitidis microcolonies, to the bactericidal and endotoxin-inhibiting activity of a novel anti-meningococcal peptide. The Tfp machinery in pathogenic Neisseria is highly conserved. Nevertheless, our data demonstrate species-specific expression levels of the Tfp retraction ATPase PilT. By using live-cell microscopy and particle tracking together with visualization of pili, differences between N. gonorrhoeae and N. meningitidis were also observed in piliation and twitching motility speed. However, these differences could not be attributed to the contrasting PilT expressions per se (Paper I). The importance of PilT for pilus dynamics is well established in the literature while comprehensive knowledge of the paralog PilU is lacking. In Paper II, results suggest that PilU promotes timely formation of microcolonies. Furthermore, both PilU and PilT were required for full virulence of meningococci in vivo. The meningococcal response upon adhesion to host cells includes upregulation of the novel virulence factor Neisseria anti-aggregation factor A (NafA). Our data indicate that NafA limits microcolony formation by preventing excessive formation of Tfp bundles (Paper III). Microcolony dispersal is a prerequisite for close adhesion and mucosal invasion. Dispersal progressed rapidly on host cells and upon induction with host cell-conditioned medium (Paper IV). The dispersal phase was not altered in NafA-deficient meningococci. However, NafA may be important after microcolony dispersal on host cells for maintaining bacteria in a single cell state (Paper IV). In Paper V, a screen of cell-penetrating peptides for antimicrobial activity towards meningococci demonstrated that transportan-10 (TP10) exhibited rapid membrane-disruptive and bactericidal activity. TP10 also decreased bacteraemia levels in a murine model of meningococcal disease. Furthermore, TP10 reduced the proinflammatory effect of endotoxin on macrophages. Thus, TP10 displays two properties that may be utilized for the development of a peptide-based treatment against pathogens.
  •  
8.
  • Thanikkal, Edvin, 1983- (author)
  • Controlling virulence in Yersinia pseudotuberculosis through accumulation of phosphorylated CpxR
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • Like many Gram-negative bacteria, the food-borne pathogen Yersinia pseudotuberculosis harbours different regulatory mechanisms to maintain an intact bacterial envelope especially during exposure to extracytoplasmic stress (ECS). The CpxA-CpxR two component regulatory system is one such ECS-responsive regulatory mechanism. Activation of CpxA-CpxR two-component regulatory system (TCRS) accumulates phosphorylated CpxR (CpxR~P), which not only up-regulates various factors that are designed to maintain envelope integrity, but also down-regulates key determinants of bacterial virulence.Y. pseudotuberculosis establishes close host cell contact in part through the expression of the invasin adhesin. Invasin expression is positively regulated by the transcriptional regulator RovA, which in turn is negatively regulated in response to nutrient stress by a second transcriptional regulator RovM. In Y. pseudotuberculosis, loss of CpxA phosphatase activity accumulates CpxR~P, and this represses both rovA and inv transcription directly, or indirectly via activation of rovM transcription. It is now of interest to understand the molecular mechanism behind how CpxR~P regulates gene transcription both positively and negatively.A type III secretion system (T3SS) is a highly conserved multi-protein secretion system used by many Gram-negative bacteria to secrete protein cargo that counteracts the effects of a host cell emitted anti-bacterial activity. A typical set of proteins that make-up a functional T3SS includes structural proteins, translocators, effectors and regulatory proteins. Accumulation of CpxR~P was shown to repress the plasmid encoded Ysc-Yop T3SS of Y. pseudotuberculosis. Although yet to be confirmed experimentally, promoter-CpxR~P binding studies indicate multiple modes of regulatory control that for example, could influence levels of the plasmid-encoded Ysc-Yop system transcriptional activator, LcrF, and the chromosomal encoded negative regulators YmoA and YtxR. Regulatory processes of TCRS involve transient molecular interactions between different proteins and also protein with DNA. Protein-protein interaction studies using the BACTH assay showed that it can be useful in analysing the molecular interactions involving the N-terminal domain of CpxR, while the λcI homodimerization assay can be useful in analysing molecular interactions involving the C-terminal domain of CpxR. Therefore, in combination with other biochemical and physiological tests, these hybrid-based assays can be useful in dissecting molecular contacts that can be helpful in exploring the mechanism behind CpxR~P mediated transcriptional regulation.In conclusion, this work uncovered direct involvement of CpxR~P in down-regulating virulence in Yersinia pseudotuberculosis. It also utilised genetic mutation and explored different protein-protein interaction assays to begin to investigate the mechanism behind the positive and negative regulation of gene expression mediated through active CpxR~P. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view