SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Freden Filip) srt2:(2020-2022)"

Sökning: WFRF:(Freden Filip) > (2020-2022)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frestadius, Andrea, et al. (författare)
  • Intranasal dexmedetomidine and rectal ketamine for young children undergoing burn wound procedures
  • 2022
  • Ingår i: Burns. - : Elsevier. - 0305-4179 .- 1879-1409. ; 48:6, s. 1445-1451
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Safe and effective methods for sedation and analgesia in pediatric burn patients are strongly warranted. This retrospective study of electronic health care records aims to evaluate the safety and efficacy of intranasal dexmedetomidine combined with rectal ketamine as procedural sedation for young children undergoing dressing changes and debridement of burn wounds.Methods: Documentation was analyzed from 90 procedures in 58 pediatric patients aged <5 years. Safety and efficacy of the method were assessed based on documentation for complications, adverse effects, pain level, level of sedation and preoperative and recovery time.Results: All 90 sedations were completed without significant adverse events with acute airway management or medical intervention. The combination of dexmedetomidine-ketamine produced acceptable analgesia during the procedure and effectively relieved postoperative pain. However, the approach was insufficient for 7/58 patients (7.8%); these patients were converted from the dexmedetomidine-ketamine combination to intravenous anesthesia. In 23% of the cases an extra dose of either ketamine of dexmedetomidine was administered. Moreover, there were two cases of delayed awakening with recovery time >120 min.Conclusion: The drug combination intranasal dexmedetomidine and rectal ketamine is a safe and reliable approach for procedural sedation and analgesia in pediatric patients undergoing burn wound procedures, producing a clinically stable sedative condition requiring only basic monitoring.
  •  
2.
  • Fransén, Jian, et al. (författare)
  • A proof-of-concept study on mortality prediction with machine learning algorithms using burn intensive care data
  • 2022
  • Ingår i: Scars, Burns & Healing. - : Sage Publications. - 2059-5131.
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionBurn injuries are a common traumatic injury. Large burns have high mortality requiring intensive care and accurate mortality predictions. To assess if machine learning (ML) could improve predictions, ML algorithms were tested and compared with the original and revised Baux score.MethodsAdmission data and mortality outcomes were collected from patients at Uppsala University Hospital Burn Centre from 2002 to 2019. Prognostic variables were selected, ML algorithms trained and predictions assessed by analysis of the area under the receiver operating characteristic curve (AUC). Comparison was made with Baux scores using DeLong test.ResultsA total of 17 prognostic variables were selected from 92 patients. AUCs in leave-one-out cross-validation for a decision tree model, an extreme boosting model, a random forest model, a support-vector machine (SVM) model and a generalised linear regression model (GLM) were 0.83 (95% confidence interval [CI] = 0.72–0.94), 0.92 (95% CI = 0.84–1), 0.92 (95% CI = 0.84–1), 0.92 (95% CI = 0.84–1) and 0.84 (95% CI = 0.74–0.94), respectively. AUCs for the Baux score and revised Baux score were 0.85 (95% CI = 0.75–0.95) and 0.84 (95% CI = 0.74–0.94). No significant differences were observed when comparing ML algorithms with Baux score and revised Baux score. Secondary variable selection was made to analyse model performance.ConclusionThis proof-of-concept study showed initial credibility in using ML algorithms to predict mortality in burn patients. The sample size was small and future studies are needed with larger sample sizes, further variable selections and prospective testing of the algorithms.
  •  
3.
  • Glas, Gerie J., et al. (författare)
  • Ventilation practices in burn patients-an international prospective observational cohort study
  • 2021
  • Ingår i: BURNS & TRAUMA. - : Oxford University Press. - 2321-3868 .- 2321-3876. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: It is unknown whether lung-protective ventilation is applied in burn patients and whether they benefit from it. This study aimed to determine ventilation practices in burn intensive care units (ICUs) and investigate the association between lung-protective ventilation and the number of ventilator-free days and alive at day 28 (VFD-28). Methods: This is an international prospective observational cohort study including adult burn patients requiring mechanical ventilation. Low tidal volume (V-T) was defined as V-T <= 8 mL/kg predicted body weight (PBW). Levels of positive end-expiratory pressure (PEEP) and maximum airway pressures were collected. The association between V-T and VFD-28 was analyzed using a competing risk model. Ventilation settings were presented for all patients, focusing on the first day of ventilation. We also compared ventilation settings between patients with and without inhalation trauma. Results: A total of 160 patients from 28 ICUs in 16 countries were included. Low V-T was used in 74% of patients, median V-T size was 7.3 [interquartile range (IQR) 6.2-8.3] mL/kg PBW and did not differ between patients with and without inhalation trauma (p= 0.58). Median VFD-28 was 17 (IQR 0-26), without a difference between ventilation with low or high V-T (p= 0.98). All patients were ventilated with PEEP levels >= 5 cmH(2)O; 80% of patients had maximum airway pressures <30 cmH(2)O. Conclusion: In this international cohort study we found that lung-protective ventilation is used in the majority of burn patients, irrespective of the presence of inhalation trauma. Use of low V-T was not associated with a reduction in VFD-28.
  •  
4.
  • Holm, Sebastian, et al. (författare)
  • Cutaneous steam burns and steam inhalation injuries : a literature review and a case presentation
  • 2022
  • Ingår i: European journal of plastic surgery. - : Springer Nature. - 0930-343X .- 1435-0130. ; 45:6, s. 881-896
  • Tidskriftsartikel (refereegranskat)abstract
    • Scald is one type of burn that s often mentioned alone and occurs mostly in the paediatric population. Inhaled steam is mostly cooled off in the airways, why thermal damage is rarely seen. A sudden exposure to hot steam/inhalation can cause a thermal inhalation injury. A scoping review was performed, with the aim to summarize all published papers in English, about steam-related injuries. The search was conducted using the PubMed (R) and Cochrane libraries on 19th of May 2021, without a set time period. Out of a total of 1186 identified records, 31 were chosen for review. Burns related to the contact with steam are generally rare and can be both minor and severe. The more severe cases related to steam exposure are mostly workplace accidents and the minor injuries reported in the literature are often related to steam inhalation therapy, especially in the paediatric population. This review describes the challenges that can be found dealing with patients suffering from cutaneous steam burns and/or steam inhalation injuries. A steam injury to the airways or the skin can be directly life-threatening and should be treated with caution. This type of injury can lead to acute respiratory insufficiency and sometimes death. A case of a male patient with extensive cutaneous steam burns and a steam inhalation injury who passed away after 11 days of treatment is also presented to illustrate this review. Level of evidence: Level V, Therapeutic; Risk/Prognostic Study.
  •  
5.
  • Hultström, Michael, 1978-, et al. (författare)
  • Limitations of the ARDS criteria during high-flow oxygen or non-invasive ventilation : evidence from critically ill COVID-19 patients
  • 2022
  • Ingår i: Critical Care. - : Springer Nature. - 1364-8535 .- 1466-609X. ; 26
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The ratio of partial pressure of arterial oxygen to inspired oxygen fraction (PaO2/FIO2) during invasive mechanical ventilation (MV) is used as criteria to grade the severity of respiratory failure in acute respiratory distress syndrome (ARDS). During the SARS-CoV2 pandemic, the use of PaO2/FIO2 ratio has been increasingly used in non-invasive respiratory support such as high-flow nasal cannula (HFNC) and non-invasive ventilation (NIV). The grading of hypoxemia in non-invasively ventilated patients is uncertain. The main hypothesis, investigated in this study, was that the PaO2/FIO2 ratio does not change when switching between MV, NIV and HFNC.Methods: We investigated respiratory function in critically ill patients with COVID-19 included in a single-center prospective observational study of patients admitted to the intensive care unit (ICU) at Uppsala University Hospital in Sweden. In a steady state condition, the PaO2/FIO2 ratio was recorded before and after any change between two of the studied respiratory support techniques (i.e., HFNC, NIV and MV).Results: A total of 148 patients were included in the present analysis. We find that any change in respiratory support from or to HFNC caused a significant change in PaO2/FIO2 ratio. Changes in respiratory support between NIV and MV did not show consistent change in PaO2/FIO2 ratio. In patients classified as mild to moderate ARDS during MV, the change from HFNC to MV showed a variable increase in PaO2/FIO2 ratio ranging between 52 and 140 mmHg (median of 127 mmHg). This made prediction of ARDS severity during MV from the apparent ARDS grade during HFNC impossible.Conclusions: HFNC is associated with lower PaO2/FIO2 ratio than either NIV or MV in the same patient, while NIV and MV provided similar PaO2/FIO2 and thus ARDS grade by Berlin definition. The large variation of PaO2/FIO2 ratio indicates that great caution should be used when estimating ARDS grade as a measure of pulmonary damage during HFNC.
  •  
6.
  • Karlsson, Victoria, et al. (författare)
  • Randomized controlled trial of low vs high oxygen during neonatal anesthesia : Oxygenation, feasibility, and oxidative stress
  • 2022
  • Ingår i: Pediatric Anaesthesia. - : John Wiley & Sons. - 1155-5645 .- 1460-9592. ; 32:9, s. 1062-1069
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To reduce risk for intermittent hypoxia a high fraction of inspired oxygen is routinely used during anesthesia induction. This differs from the cautious dosing of oxygen during neonatal resuscitation and intensive care and may result in significant hyperoxia. Aim In a randomized controlled trial, we evaluated oxygenation during general anesthesia with a low (23%) vs a high (80% during induction and recovery, and 40% during maintenance) fraction of inspired oxygen, in newborn infants undergoing surgery. Method Thirty-five newborn infants with postconceptional age of 35-44 weeks were included (17 infants in low and 18 in high oxygen group). Oxygenation was monitored by transcutaneous partial pressure of oxygen, pulse oximetry, and cerebral oxygenation. Predefined SpO2 safety targets dictated when to increase inspired oxygen. Results At start of anesthesia, oxygenation was similar in both groups. Throughout anesthesia, the high oxygen group displayed significant hyperoxia with higher (difference-20.3 kPa, 95% confidence interval (CI)-28.4 to 12.2, p < .001) transcutaneous partial pressure of oxygen values than the low oxygen group. While SpO2 in the low oxygen group was lower (difference - 5.8%, 95% CI -9.3 to -2.4, p < .001) during anesthesia, none of the infants spent enough time below SpO(2) safety targets to mandate supplemental oxygen, and cerebral oxygenation was within the normal range and not statistically different between the groups. Analysis of the oxidative stress biomarker urinary F-2-Isoprostane revealed no differences between the low and high oxygen group. Conclusion We conclude that in healthy newborn infants, use of low oxygen during general anesthesia was feasible, while the prevailing practice of using high levels of inspired oxygen resulted in significant hyperoxia. The trade-off between careful dosing of oxygen and risks of hypo- and hyperoxia in neonatal anesthesia should be further examined.
  •  
7.
  • Pellegrini, Mariangela, et al. (författare)
  • Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse
  • 2020
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - : AMER THORACIC SOC. - 1073-449X .- 1535-4970. ; 3:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.Objectives: To assess whether external expiratory resistances 1) affect expiratory diaphragmatic contraction during spontaneous breathing, 2) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and 3) reduce tidal atelectasis, preventing hyperinflation.Methods: Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.Measurements and Main Results: Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), 1) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%, 2) expiratory flow was reduced and the expiratory time constants became more homogeneous, and 3) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.Conclusions: The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.
  •  
8.
  • Pellegrini, Mariangela, et al. (författare)
  • Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse.
  • 2020
  • Ingår i: American journal of respiratory and critical care medicine. - 1535-4970. ; 201:10, s. 1218-1229
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.Objectives: To assess whether external expiratory resistances 1) affect expiratory diaphragmatic contraction during spontaneous breathing, 2) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and 3) reduce tidal atelectasis, preventing hyperinflation.Methods: Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.Measurements and Main Results: Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), 1) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%, 2) expiratory flow was reduced and the expiratory time constants became more homogeneous, and 3) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.Conclusions: The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy