SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fridén Bo) srt2:(2020-2022)"

Sökning: WFRF:(Fridén Bo) > (2020-2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Langer, Sarka, 1960, et al. (författare)
  • Impacts of fuel quality on indoor environment onboard a ship: From policy to practice
  • 2020
  • Ingår i: Transportation Research Part D-Transport and Environment. - : Elsevier BV. - 1361-9209 .- 1879-2340. ; 83
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental considerations, concerning the negative impacts of ship exhaust gases and particles on ambient air quality, are behind the requirements of cleaner marine fuels currently applied in designated emission control areas (ECAs). We investigated the impact of a ship operating on two types of fuel on the indoor air quality onboard. Gaseous and particulate air pollutants were measured in the engine room and the accommodation sections on-board an icebreaker operating first on Heavy Fuel Oil (HFO, 1%-S), and later Marine Diesel Oil (MDO, 0.1%-S). Statistically significant decrease of SO2, NOx, PM2.5 and particle number concentration were observed when the ship was operating on MDO. Due to the higher content of alkylated PAHs in MDO compared to HFO, the concentration of PAHs increased during operation on MDO. The particulate PAHs classified as carcinogens, were similar to or lower in the MDO campaign. Chemical analysis of PM2.5 revealed that the particles consisted mainly of organic carbon and sulfate, although the fraction of metals was quite large in particles from the engine room. Principal Component Analysis of all measured parameters showed a clear difference between HFO and MDO fuel on the indoor environmental quality on-board the ship. This empirical study poses a first example on how environmental policy-making impacts not only the primary target at a global level, but also brings unexpected localized benefits at workplace level. The study emphasizes the need of further investigations on the impact of new marine fuels and technologies on the indoor air environments on board.
  •  
2.
  • Loryan, Irena, Associate Professor (Docent), 1977-, et al. (författare)
  • Unbound Brain-to-Plasma Partition Coefficient, K-p,K-uu,K-brain-a Game Changing Parameter for CNS Drug Discovery and Development
  • 2022
  • Ingår i: Pharmaceutical research. - : Springer Nature. - 0724-8741 .- 1573-904X. ; 39:7, s. 1321-1341
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (K-p,K-uu,K-brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, K-p,K-uu,K-brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. Methods To understand the importance and impact of the K-p,K-uu,K-brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. Results and conclusions From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of K-p,K-uu,K-brain as compared to other parameters related to brain exposure. Adoption of the K-p,K-uu,K-brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of K-p,K-uu,K-brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for K-p,K-uu,K-brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy