SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gao N.) srt2:(2020-2024)"

Search: WFRF:(Gao N.) > (2020-2024)

  • Result 1-50 of 189
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Lind, Lars, et al. (author)
  • Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)
  • 2021
  • In: eLife. - : eLife Sciences Publications Ltd. - 2050-084X. ; 10
  • Journal article (peer-reviewed)abstract
    • From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions.
  •  
3.
  •  
4.
  •  
5.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
6.
  •  
7.
  • Mishra, A, et al. (author)
  • Diminishing benefits of urban living for children and adolescents' growth and development
  • 2023
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615:7954, s. 874-883
  • Journal article (peer-reviewed)abstract
    • Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.
  •  
8.
  •  
9.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Ramdas, S., et al. (author)
  • A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids
  • 2022
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 109:8, s. 1366-1387
  • Journal article (peer-reviewed)abstract
    • A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.
  •  
14.
  • Taddei, C, et al. (author)
  • Repositioning of the global epicentre of non-optimal cholesterol
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 582:7810, s. 73-
  • Journal article (peer-reviewed)abstract
    • High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.
  •  
15.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
16.
  • Sugai, H., et al. (author)
  • Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
  • 2020
  • In: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 199:3-4, s. 1107-1117
  • Journal article (peer-reviewed)abstract
    • Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy's foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Kim, Jae-Young, et al. (author)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Journal article (peer-reviewed)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
21.
  •  
22.
  • Marconi, A., et al. (author)
  • ANDES, the high resolution spectrograph for the ELT : science case, baseline design and path to construction
  • 2022
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Conference paper (peer-reviewed)abstract
    • The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of similar to 100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 mu m with the goal of extending it to 0.35-2.4 mu m with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coude room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature's fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Stroth, U., et al. (author)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Journal article (peer-reviewed)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
27.
  •  
28.
  • Winkler, TW, et al. (author)
  • Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals
  • 2022
  • In: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 580-
  • Journal article (peer-reviewed)abstract
    • Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.
  •  
29.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
30.
  • Patel, Y., et al. (author)
  • Virtual Ontogeny of Cortical Growth Preceding Mental Illness
  • 2022
  • In: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 92:4, s. 299-313
  • Journal article (peer-reviewed)abstract
    • Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy.
  •  
31.
  • Saito, T. R., et al. (author)
  • Studies of three-and four-body hypernuclei with heavy-ion beams, nuclear emulsions and machine learning
  • 2023
  • In: Journal of Physics, Conference Series. - : Institute of Physics (IOP). - 1742-6588 .- 1742-6596. ; 2586
  • Journal article (peer-reviewed)abstract
    • Interests on few-body hypernuclei have been increased by recent results of experiments employing relativistic heavy ion beams. Some of the experiments have revealed that the lifetime of the lightest hypernucleus, hypertriton, is significantly shorter than 263 ps which is expected by considering the hypertriton to be a weakly-bound system. The STAR collaboration has also measured the hypertriton binding energy, and the deduced value is contradicting to its formerly known small binding energy. These measurements have indicated that the fundamental physics quantities of the hypertriton such as its lifetime and binding energy have not been understood, therefore, they have to be measured very precisely. Furthermore, an unprecedented Lambda nn bound state observed by the HypHI collaboration has to be studied in order to draw a conclusion whether or not such a bound state exists. These three-body hypernuclear states are studied by the heavy-ion beam data in the WASA-FRS experiment and by analysing J-PARC E07 nuclear emulsion data with machine learning.
  •  
32.
  •  
33.
  •  
34.
  • Saito, T. R., et al. (author)
  • The WASA-FRS project at GSI and its perspective
  • 2023
  • In: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier. - 0168-583X .- 1872-9584. ; 542, s. 22-25
  • Journal article (peer-reviewed)abstract
    • A novel technique to study bound states of exotic hadrons in subatomic nuclei, such as hypernuclei and mesic nuclei, has been developed by employing the Fragment Separator FRS and the WASA central detector at GSI. Two experiments, S447 for studying light hypernuclei, especially hypertriton and a Ann bound state, and S490 for searching for ri' mesic-nuclei, were recently performed. Data analyses are currently in progress, and light charged particles such as protons and x & PLUSMN; are clearly observed and identified in the both experiments. For S447, light nuclear fragments that can also be residual nuclei from decays of hypernuclei of interests have been analysed by the FRS, and a momentum resolution, Ap/p, of 5 x 10-4 has been achieved. Further data analyses are to be completed. The WASA-FRS project will be continued and extended with the FRS at FAIR Phase 0, and upgrading of the WASA magnet and detectors is currently in progress. Furthermore, construction of a larger detector system with the Super-FRS at FAIR Phase 1 is also under consideration.
  •  
35.
  • Surendran, Praveen, et al. (author)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Journal article (peer-reviewed)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
36.
  • Tanaka, Y. K., et al. (author)
  • WASA-FRS EXPERIMENTS IN FAIR PHASE-0 AT GSI
  • 2023
  • In: ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT. - : Jagiellonian University.
  • Conference paper (peer-reviewed)abstract
    • We have developed a new and unique experimental setup integrating the central part of the Wide Angle Shower Apparatus (WASA) into the Fragment Separator (FRS) at GSI. This combination opens up possibilities of new experiments with high-resolution spectroscopy at forward 0 and measurements of light decay particles with nearly full solid-angle acceptance in coincidence. The first series of the WASA-FRS experiments have been successfully carried out in 2022. The developed experimental setup and two physics experiments performed in 2022 including the status of the preliminary data analysis are introduced.
  •  
37.
  •  
38.
  • de las Fuentes, Lisa, et al. (author)
  • Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci
  • 2021
  • In: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:6, s. 2111-2125
  • Journal article (peer-reviewed)abstract
    • Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, “Some College” (yes/no) and “Graduated College” (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
  •  
39.
  • Gjestvang, D., et al. (author)
  • Examination of how properties of a fissioning system impact isomeric yield ratios of the fragments
  • 2023
  • In: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 108:6
  • Journal article (peer-reviewed)abstract
    • The population of isomeric states in the prompt decay of fission fragments-so-called isomeric yield ratios (IYRs)-is known to be sensitive to the angular momentum J that the fragment emerged with, and may therefore contain valuable information on the mechanism behind the fission process. In this work, we investigate how changes in the fissioning system impact the measured IYRs of fission fragments to learn more about what parameters affect angular momentum generation. To enable this, a new technique for measuring IYRs is first demonstrated. It is based on the time of arrival of discrete gamma rays, and has the advantage that it enables the study of the IYR as a function of properties of the partner nucleus. This technique is used to extract the IYR of 134Te, strongly populated in actinide fission, from the three different fissioning systems: 232Th(n, f), 238U(n, f), at two different neutron energies, as well as 252Cf(sf). The impacts of changing the fissioning system, the compound nuclear excitation energy, the minimum J of the binary partner, and the number of neutrons emitted on the IYR of 134Te are determined. The decay code TALYS is used in combination with the fission simulation code FREYA to calculate the primary fragment angular momentum from the IYR. We find that the IYR of 134Te has a slope of 0.004 +/- 0.002 with increase in compound nucleus (CN) mass. When investigating the impact on the IYR of increased CN excitation energy, we find no change with an energy increase similar to the difference between thermal and fast fission. By varying the mass of the partner fragment emerging with 134Te, it is revealed that the IYR of 134Te is independent of the total amount of prompt neutrons emitted from the fragment pair. This indicates that neutrons carry minimal angular momentum away from the fission fragments. Comparisons with the FREYA+TALYS simulations reveal that the average angular momentum in 134Te following 238U(n, f) is 6.0 h over bar . This is not consistent with the value deduced from recent CGMF calculations. Finally, the IYR sensitivity to the angular momentum of the primary fragment is discussed. These results are not only important to help understanding the underlying mechanism in nuclear fission, but can also be used to constrain and benchmark fission models, and are relevant to the gamma -ray heating problem of reactors.
  •  
40.
  • Jansen, Joachim, 1989-, et al. (author)
  • Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing
  • 2023
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.
  •  
41.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  • Aprile, E., et al. (author)
  • Energy resolution and linearity of XENON1T in the MeV energy range
  • 2020
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:8
  • Journal article (peer-reviewed)abstract
    • Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
  •  
46.
  • Aprile, E., et al. (author)
  • Excess electronic recoil events in XENON1T
  • 2020
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 102:7
  • Journal article (peer-reviewed)abstract
    • We report results from searches for new physics with low-energy electronic recoil data recorded with the XENONIT detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76 +/- 2(stat) events/(tonne x year x keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4 sigma significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by g(ae) < 3.8 x 10(-12), g(ae)g(an)(eff) < 4.8 x 10(-18), and g(ae)g(a gamma) < 7.7 x 10(-22) GeV-1, and excludes either g(ae) = 0 or g(ae)g(a gamma) = g(ae)ge(an)(eff), = 0. The neutrino magnetic moment signal is similarly favored over background at 3.2 sigma, and a confidence interval of mu(nu) is an element of (1.4, 2.9) x 10(-11) mu(B) (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by beta decays of tritium at 3.2 sigma significance with a corresponding tritium concentration in xenon of (6.2 +/- 2.0) x 10(-25) mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses arc decreased to 2.0 sigma and 0.9 sigma, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3 +/- 0.2) keV (68% C.L.) with a 3.0 sigma global (4.0 sigma local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c(2). We also consider the possibility that Ar-37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar-37 concentration can be tightly constrained and is found to be negligible.
  •  
47.
  • Aprile, E., et al. (author)
  • Projected WIMP sensitivity of the XENONnT dark matter experiment
  • 2020
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Journal article (peer-reviewed)abstract
    • XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 +/- 0.6 (keV t y)(-1) and (2.2 +/- 0.5) x 10(-3 )(keV t y)(-1), respectively, in a 4t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4 x 10(-48) cm(2) for a 50 GeV/c(2) mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c(2) WIMP with cross-sections above 2.6 x 10(-48) cm(2) (5.0 x 10(-48) cm(2)) the median XENONnT discovery significance exceeds 3 sigma (5 sigma). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2 x 10(-43) cm(2) (6.0 x 10(-42) cm(2)).
  •  
48.
  •  
49.
  •  
50.
  • Burn, E., et al. (author)
  • Deep phenotyping of 34,128 adult patients hospitalised with COVID-19 in an international network study
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Comorbid conditions appear to be common among individuals hospitalised with coronavirus disease 2019 (COVID-19) but estimates of prevalence vary and little is known about the prior medication use of patients. Here, we describe the characteristics of adults hospitalised with COVID-19 and compare them with influenza patients. We include 34,128 (US: 8362, South Korea: 7341, Spain: 18,425) COVID-19 patients, summarising between 4811 and 11,643 unique aggregate characteristics. COVID-19 patients have been majority male in the US and Spain, but predominantly female in South Korea. Age profiles vary across data sources. Compared to 84,585 individuals hospitalised with influenza in 2014-19, COVID-19 patients have more typically been male, younger, and with fewer comorbidities and lower medication use. While protecting groups vulnerable to influenza is likely a useful starting point in the response to COVID-19, strategies will likely need to be broadened to reflect the particular characteristics of individuals being hospitalised with COVID-19. Detailed knowledge of the characteristics of COVID-19 patients helps with public health planning. Here, the authors use routinely-collected data from seven databases in three countries to describe the characteristics of >30,000 patients admitted with COVID-19 and compare them with those admitted for influenza in previous years.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 189
Type of publication
journal article (179)
conference paper (7)
research review (3)
Type of content
peer-reviewed (169)
other academic/artistic (20)
Author/Editor
Gao, Y. (19)
Bruno, G. (17)
Clark, M. (17)
Zhang, Y. (16)
Liu, J. (15)
Wei, Y. (13)
show more...
Colijn, A. P. (12)
Diglio, S. (12)
Gao, J. (12)
Wang, H. (12)
Ye, J. (12)
Agostini, F. (12)
Althueser, L. (12)
Aprile, E. (12)
Arneodo, F. (12)
Baudis, L. (12)
Conrad, Jan (12)
Brown, A. (12)
Budnik, R. (12)
Capelli, C. (12)
Cichon, D. (12)
Cussonneau, J. P. (12)
Decowski, M. P. (12)
Fulgione, W. (12)
Di Gangi, P. (12)
Di Giovanni, A. (12)
Galloway, M. (12)
Grandi, L. (12)
Howlett, J. (12)
Hils, C. (12)
Landsman, H. (12)
Lang, R. F. (12)
Lindemann, S. (12)
Lopes, J. A. M. (12)
Masbou, J. (12)
Molinario, A. (12)
Murra, M. (12)
Ni, K. (12)
Plante, G. (12)
Rupp, N. (12)
Dos Santos, J. M. F. (12)
Sartorelli, G. (12)
Schumann, M. (12)
Selvi, M. (12)
Shagin, P. (12)
Thers, D. (12)
Weinheimer, C. (12)
Zhu, T. (12)
Ferella, A. D. (12)
Gaemers, P. (12)
show less...
University
Karolinska Institutet (109)
Uppsala University (38)
University of Gothenburg (30)
Lund University (25)
Stockholm University (22)
Umeå University (17)
show more...
Chalmers University of Technology (15)
Royal Institute of Technology (10)
University of Skövde (5)
Swedish University of Agricultural Sciences (4)
Örebro University (3)
Linköping University (3)
Högskolan Dalarna (3)
Mid Sweden University (2)
Luleå University of Technology (1)
Jönköping University (1)
Malmö University (1)
show less...
Language
English (189)
Research subject (UKÄ/SCB)
Natural sciences (65)
Medical and Health Sciences (51)
Engineering and Technology (13)
Social Sciences (3)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view