SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giannini T.) srt2:(2010-2014)"

Sökning: WFRF:(Giannini T.) > (2010-2014)

  • Resultat 1-31 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S., et al. (författare)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Forskningsöversikt (refereegranskat)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  •  
4.
  • Bergin, E. A., et al. (författare)
  • Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L33-
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a sensitive search for the ground-state emission lines of ortho-and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3 sigma levels in 0.5 km s(-1) channels of 4.2 mK for the 1(10)-1(01) line and 12.6 mK for the 1(11)-0(00) line. We report a very tentative detection, however, of the 1(10)-1(01) line in the wide band spectrometer, with a strength of T-mb = 2.7 mK, a width of 5.6 km s(-1) and an integrated intensity of 16.0 mK km s(-1). The latter constitutes a 6 sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane.
  •  
5.
  • Caselli, P., et al. (författare)
  • Water vapor toward starless cores : The Herschel view
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L29-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Previous studies by the satellites SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) < 7 × 10-9). We investigate the chemistry of water vapor in starless cores beyond the previous upper limits using the highly improved angular resolution and sensitivity of Herschel and measure the abundance of water vapor during evolutionary stages just preceding star formation. Methods: High spectral resolution observations of the fundamental ortho water (o-H2O) transition (557 GHz) were carried out with the Heterodyne Instrument for the Far Infrared onboard Herschel toward two starless cores: Barnard 68 (hereafter B68), a Bok globule, and LDN 1544 (L1544), a prestellar core embedded in the Taurus molecular cloud complex. Detailed radiative transfer and chemical codes were used to analyze the data. Results: The RMS in the brightness temperature measured for the B68 and L1544 spectra is 2.0 and 2.2 mK, respectively, in a velocity bin of 0.59 km s-1. The continuum level is 3.5 ± 0.2 mK in B68 and 11.4 ± 0.4 mK in L1544. No significant feature is detected in B68 and the 3σ upper limit is consistent with a column density of o-H2O N(o-H2O) < 2.5 × 1013 cm-2, or a fractional abundance x(o-H2O) < 1.3 × 10-9, more than an order of magnitude lower than the SWAS upper limit on this source. The L1544 spectrum shows an absorption feature at a 5σ level from which we obtain the first value of the o-H2O column density ever measured in dark clouds: N(o-H2O) = (8 ± 4) × 1012 cm-2. The corresponding fractional abundance is x(o-H2O) ≃ 5 × 10-9 at radii >7000 AU and ≃2 × 10-10 toward the center. The radiative transfer analysis shows that this is consistent with a x(o-H2O) profile peaking at ≃10-8, 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Conclusions: Herschel has provided the first measurement of water vapor in dark regions. Column densities of o-H2O are low, but prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) appear to be very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds and oxygen chemistry in the earliest stages of star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
6.
  • Fich, M., et al. (författare)
  • Herschel-PACS spectroscopy of the intermediate mass protostar NGC 7129 FIRS 2
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L86
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present preliminary results of the first Herschel spectroscopic observations of NGC 7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope. Methods. The PACS instrument was used in line spectroscopy mode ( R = 1000-5000) with 15 spectral bands between 63 and 185 mu m. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II. Results. Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines. Conclusions. It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks.
  •  
7.
  • Marseille, M. G., et al. (författare)
  • Water abundances in high-mass protostellar envelopes : Herschel observations with HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L32-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We derive the dense core structure and the water abundance in four massive star-forming regions in the hope of understanding the earliest stages of massive star formation. Methods: We present Herschel/HIFI observations of the para-H2O 111-000 and 202-111 and the para-H_218O 111-000 transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modeled with Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), and the water abundance and the turbulent velocity width as free parameters. Results: While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5×10-10 to 4×10-8 in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel/HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. Conclusions: The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation of NASA.Appendix (pages 6 to 7) is only available in electronic form at http://www.aanda.org
  •  
8.
  • van Dishoeck, E. F., et al. (författare)
  • Water in Star-forming Regions with the Herschel Space Observatory (WISH). I. Overview of Key Program and First Results
  • 2011
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 123:900, s. 138-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structures of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted, covering a wide ranee of luminosities-from low ( 10(5) L-circle dot)-and a wide range of evolutionary stages-from cold prestellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, (H2O)-O-18 and chemically related species at the source position and in small maps around the protostars and selected outflow positions. In addition, high-frequency lines of CO, (CO)-C-13, and (CO)-O-18 are obtained with Herschel and are complemented by ground-based observations of dust continuum, HDO, CO and its isotopologs, and other molecules to ensure a self-consistent data set for analysis. An overview of the scientific motivation and observational strategy of the program is given, together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained that have profound implications for our understanding of grain growth and mixing in disks.
  •  
9.
  • van Kempen, T. A., et al. (författare)
  • Origin of the hot gas in low-mass protostars Herschel-PACS spectroscopy of HH 46
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L121
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. "Water In Star-forming regions with Herschel" (WISH) is a Herschel key programme aimed at understanding the physical and chemical structure of young stellar objects (YSOs) with a focus on water and related species. Methods. The low-mass protostar HH 46 was observed with the Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory to measure emission in H2O, CO, OH, [O I], and [C II] lines located between 63 and 186 mu m. The excitation and spatial distribution of emission can disentangle the different heating mechanisms of YSOs, with better spatial resolution and sensitivity than previously possible. Results. Far-IR line emission is detected at the position of the protostar and along the outflow axis. The OH emission is concentrated at the central position, CO emission is bright at the central position and along the outflow, and H2O emission is concentrated in the outflow. In addition, [O I] emission is seen in low-velocity gas, assumed to be related to the envelope, and is also seen shifted up to 170 km s(-1) in both the red-and blue-shifted jets. Envelope models are constructed based on previous observational constraints. They indicate that passive heating of a spherical envelope by the protostellar luminosity cannot explain the high-excitation molecular gas detected with PACS, including CO lines with upper levels at >2500 K above the ground state. Instead, warm CO and H2O emission is probably produced in the walls of an outflow-carved cavity in the envelope, which are heated by UV photons and non-dissociative C-type shocks. The bright OH and [O I] emission is attributed to J-type shocks in dense gas close to the protostar. In the scenario described here, the combined cooling by far-IR lines within the central spatial pixel is estimated to be 2 x 10(-2) L-circle dot, with 60-80% attributed to J- and C-type shocks produced by interactions between the jet and the envelope.
  •  
10.
  • Benz, A. O., et al. (författare)
  • Hydrides in young stellar objects : Radiation tracers in a protostar-disk-outflow system
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L35-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods: W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (≃2500 s) in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J = 1-0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions: The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation. Herschel is an ESA space observatory with science instruments provided by a European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org
  •  
11.
  • Bruderer, S., et al. (författare)
  • Herschel/HIFI detections of hydrides towards AFGL 2591. Envelope emission versus tenuous cloud absorption
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L44-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH+, NH, OH+, H2O+, while NH+ and SH+ have not been detected. All molecules except for CH and CH+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(JF,P = 3/22,- - 1/21,+ ) and CH+(J = 1-0, J = 2-1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH+ emission stems from the envelope. The observed abundance and excitation of CH and CH+ can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Apppendices and Table 1 (pages 6 to 7) are only available in electronic form at http://www.aanda.org
  •  
12.
  • Chavarria, L., et al. (författare)
  • Water in massive star-forming regions : HIFI observations of W3 IRS5
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L37-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-(H2O)-O-17 1(10)-1(01), p-(H2O)-O-18 1(11)-0(00), p-H2O 2(02)-1(11), p-H2O 1(11)-0(00), o-H2O 2(21)-2(12), and o-H2O 2(12)-1(01) lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 1(11)-0(00) and o-H2O 2(12)-1(01) lines show absorption from the cold material (T similar to 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T greater than or similar to 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10(-4)) is needed to reproduce the o-(H2O)-O-17 1(10)-1(01) and p-(H2O)-O-18 1(11)-0(00) spectra in our models. We estimate water abundances of 10(-8) to 10(-9) in the outer parts of the envelope (T less than or similar to 100 K). The possibility of two protostellar objects contributing to the emission is discussed.
  •  
13.
  • Ferrario, M., et al. (författare)
  • IRIDE : Interdisciplinary research infrastructure based on dual electron linacs and lasers
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 740, s. 138-146
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. [RIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.
  •  
14.
  • Johnstone, D., et al. (författare)
  • Herschel/HIFI spectroscopy of the intermediate mass protostar NGC7129 FIRS 2
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L41-
  • Tidskriftsartikel (refereegranskat)abstract
    • Herschel/HIFI observations of water from the intermediate mass protostar NGC 7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this star formation environment. Six spectral settings, covering four (H2O)-O-16 and two (H2O)-O-18 lines, were observed and all but one (H2O)-O-18 line were detected. The four (H2O)-O-16 lines discussed here share a similar morphology: a narrower, approximate to 6kms(-1), component centered slightly redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, approximate to 25 km s(-1) component centered blueward and likely associated with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate mass protostar, and the abundance of H2O is constrained to approximate to 10(-7) for the outer envelope. Additionally, the presence of a narrow self-absorption component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the H2O/CO relative abundance is found to be approximate to 0.2, appears to be tracing the same energetic region that produces strong CO emission at high J.
  •  
15.
  • Kristensen, L. E., et al. (författare)
  • Water in low-mass star-forming regions with Herschel . HIFI spectroscopy of NGC 1333
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L30-
  • Tidskriftsartikel (refereegranskat)abstract
    • “Water In Star-forming regions with Herschel” (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC 1333 in several H_216O, H_218O, and CO transitions. Line profiles are resolved for five H_216O transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km s-1), medium-broad (~5-10 km s-1), and narrow (<5 km s-1) components. The H_218O emission is only detected in broad 110-101 lines (>20 km s-1), indicating that its physical origin is the same as for the broad H_216O component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (⪉1000 AU) and large scales along the outflow cavity walls (~10 000 AU). The H2O line profiles are compared to CO line profiles to constrain the H2O abundance as a function of velocity within these shocked regions. The H2O/CO abundance ratios are measured to be in the range of ~0.1-1, corresponding to H2O abundances of ~10-5-10-4 with respect to H2. Approximately 5-10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 2 and 3 (page 6) are only available in electronic form at http://www.aanda.org
  •  
16.
  • Nisini, B., et al. (författare)
  • Water cooling of shocks in protostellar outflows. Herschel-PACS map of L1157
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L120-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The far-IR/sub-mm spectral mapping facility provided by the Herschel-PACS and HIFI instruments has made it possible to obtain, for the first time, images of H2O emission with a spatial resolution comparable to ground based mm/sub-mm observations. Aims: In the framework of the Water In Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 μm transition obtained toward the young outflow L1157. Methods: The 179 μm map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the H2O abundance and total cooling. Results: Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 μm emission is spatially correlated with emission from H2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 μm intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10-4. This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total H2O cooling is ~10-1 L_ȯ, about 40% of the cooling due to H2 and 23% of the total energy released in shocks along the L1157 outflow. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important partecipation from NASA.
  •  
17.
  • van der Tak, F. F. S., et al. (författare)
  • Water abundance variations around high-mass protostars: HIFI observations of the DR21 region
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L107
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key molecule in the star formation process, but its spatial distribution in star-forming regions is not well known. Aims. We study the distribution of dust continuum and H2O and (CO)-C-13 line emission in DR21, a luminous star-forming region with a powerful outflow and a compact H II region. Methods. Herschel-HIFI spectra near 1100 GHz show narrow (CO)-C-13 10-9 emission and H2O 1(11)-0(00) absorption from the dense core and broad emission from the outflow in both lines. The H2O line also shows absorption by a foreground cloud known from ground-based observations of low-J CO lines. Results. The dust continuum emission is extended over 36 '' FWHM, while the (CO)-C-13 and H2O lines are confined to approximate to 24 '' or less. The foreground absorption appears to peak further North than the other components. Radiative transfer models indicate very low abundances of similar to 2 x 10(-10) for H2O and similar to 8 x 10(-7) for (CO)-C-13 in the dense core, and higher H2O abundances of similar to 4 x 10(-9) in the foreground cloud and similar to 7 x 10(-7) in the outflow. Conclusions. The high H2O abundance in the warm outflow is probably due to the evaporation of water-rich icy grain mantles, while the H2O abundance is kept down by freeze-out in the dense core and by photodissociation in the foreground cloud.
  •  
18.
  • Wampfler, S. F., et al. (författare)
  • Herschel observations of the hydroxyl radical (OH) in young stellar objects
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L36-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: “Water In Star-forming regions with Herschel” (WISH) is a Herschel key program investigating the water chemistry in young stellar objects (YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and destruction of H2O. High-temperature (T ⪆ 250 K) chemistry connects OH and H2O through the OH + H2 Leftrightarrow H2O + H reactions. Formation of H2O from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the presence of UV photons, OH can be produced from the photo-dissociation of H2O through H2O + γUV Rightarrow OH + H. Methods: High-resolution spectroscopy of the 163.12 μm triplet of OH towards HH 46 and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory. The low- and intermediate-mass protostars HH 46, TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were observed with the Photodetector Array Camera and Spectrometer (PACS) on Herschel in four transitions of OH and two [O i] lines. Results: The OH transitions at 79, 84, 119, and 163 μm and [O i] emission at 63 and 145 μm were detected with PACS towards the class I low-mass YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, though the 119 μm was detected in absorption. With HIFI, the 163.12 μm was not detected from HH 46 and only tentatively detected from NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM ⪆ 11 km s-1) and indicates that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [O i] flux and the bolometric luminosity, as found in our sample. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures despite the different physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices (page 6) are only available in electronic form at http://www.aanda.org
  •  
19.
  • Wyrowski, F., et al. (författare)
  • Variations in H2O+/H2O ratios toward massive star-forming regions
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L34-
  • Tidskriftsartikel (refereegranskat)abstract
    • Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Observatory toward a sample of high-mass star-forming regions to observationally study the relation between H2O and H2O+. Nine out of ten sources show absorption from H2O+ in a range of environments: the molecular clumps surrounding the forming and newly formed massive stars, bright high-velocity outflows associated with the massive protostars, and unrelated low-density clouds along the line of sight. Column densities per velocity component of H2O+ are found in the range of 10(12) to a few 10(13) cm(-2). The highest N(H2O+) column densities are found in the outflows of the sources. The ratios of H2O+/H2O are determined in a range from 0.01 to a few and are found to differ strongly between the observed environments with much lower ratios in the massive (proto) cluster envelopes (0.01-0.1) than in outflows and diffuse clouds. Remarkably, even for source components detected in H2O in emission, H2O+ is still seen in absorption.
  •  
20.
  • Yildiz, U. A., et al. (författare)
  • Herschel/HIFI observations of high-J CO lines in the NGC 1333 low-mass star-forming region
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L40-
  • Tidskriftsartikel (refereegranskat)abstract
    • Herschel/HIFI observations of high-J lines (up to J(u) = 10) of (CO)-C-12, (CO)-C-13 and (CO)-O-18 are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally-resolved HIFI data are complemented by ground-based observations of lower-J CO and isotopologue lines. The (CO)-C-12 10-9 profiles are dominated by broad (FWHM 25-30 km s(-1)) emission. Radiative transfer models are used to constrain the temperature of this shocked gas to 100-200 K. Several CO and (CO)-C-13 line profiles also reveal a medium-broad component (FWHM5-10 km s(-1)), seen prominently in H2O lines. Column densities for both components are presented, providing a reference for determining abundances of other molecules in the same gas. The narrow (CO)-O-18 9-8 lines probe the warmer part of the quiescent envelope. Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars.
  •  
21.
  •  
22.
  • Bjerkeli, Per, 1977, et al. (författare)
  • H2O line mapping at high spatial and spectral resolution Herschel observations of the VLA 1623 outflow
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 546, s. Article Number: A29 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Apart from being an important coolant, water is known to be a tracer of high-velocity molecular gas. Recent models predict relatively high abundances behind interstellar shockwaves. The dynamical and physical conditions of the water emitting gas, however, are not fully understood yet. Using the Herschel Space Observatory, it is now possible to observe water emission from supersonic molecular outflows at high spectral and spatial resolution. Several molecular outflows from young stars are currently being observed as part of the WISH (Water In Star-forming regions with Herschel) key program. Aims. We aim to determine the abundance and distribution of water, its kinematics, and the physical conditions of the gas responsible for the water emission. The observed line profile shapes help us understand the dynamics in molecular outflows. Methods. We mapped the VLA1623 outflow, in the ground-state transitions of o-H2O, with the HIFI and PACS instruments. We also present observations of higher energy transitions of o-H2O and p-H2O obtained with HIFI and PACS towards selected outflow positions. From comparison with non-LTE radiative transfer calculations, we estimate the physical parameters of the water emitting regions. Results. The observed water emission line profiles vary over the mapped area. Spectral features and components, tracing gas in different excitation conditions, allow us to constrain the density and temperature of the gas. The water emission originates in a region where temperatures are comparable to that of the warm H-2 gas (T greater than or similar to 200 K). Thus, the water emission traces a gas component significantly warmer than the gas responsible for the low-J CO emission. The water column densities at the CO peak positions are low, i.e. N(H2O) similar or equal to (0.03-10) x 10(14) cm(-2). Conclusions. The water abundance with respect to H-2 in the extended outflow is estimated at X(H2O)
  •  
23.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Herschel observations of the Herbig-Haro objects HH52-54
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The emission from Herbig-Haro objects and supersonic molecular outflows is understood as cooling radiation behind shocks, which are initiated by a (proto-)stellar wind or jet. Within a given object, one often observes both dissociative (J-type) and non-dissociative (C-type) shocks, owing to the collective effects of internally varying shock velocities. Aims. We aim at the observational estimation of the relative contribution to the cooling by CO and H(2)O, as this provides decisive information for understanding the oxygen chemistry behind interstellar shock waves. Methods. The high sensitivity of HIFI, in combination with its high spectral resolution capability, allowed us to trace the H(2)O outflow wings at an unprecedented signal-to-noise ratio. From the observation of spectrally resolved H(2)O and CO lines in the HH52-54 system, both from space and from the ground, we arrived at the spatial and velocity distribution of the molecular outflow gas. Solving the statistical equilibrium and non-LTE radiative transfer equations provides us with estimates of the physical parameters of this gas, including the cooling rate ratios of the species. The radiative transfer is based on an accelerated lambda iteration code, where we use the fact that variable shock strengths, distributed along the front, are naturally implied by a curved surface. Results. Based on observations of CO and H(2)O spectral lines, we conclude that the emission is confined to the HH54 region. The quantitative analysis of our observations favours a ratio of the CO-to-H(2)O-cooling-rate >> 1. Formally, we derived the ratio A(CO)/A(o-H(2)O) = 10, which is in good agreement with earlier determination of 7 based on ISO-LWS observations. From the best-fit model to the CO emission, we arrive at an H(2)O abundance close to 1 x 10(-5). The line profiles exhibit two components, one that is triangular and another that is a superposed, additional feature. This additional feature is likely to find its origin in a region that is smaller than the beam where the ortho-water abundance is smaller than in the quiescent gas. Conclusions. Comparison with recent shock models indicate that a planar shock cannot easily explain the observed line strengths and triangular line profiles. We conclude that the geometry can play an important role. Although abundances support a scenario where J-type shocks are present, higher cooling rate ratios are derived than predicted by these types of shocks.
  •  
24.
  • Nisini, B., et al. (författare)
  • Mapping water in protostellar outflows with Herschel PACS and HIFI observations of L1448-C
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 549
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key probe of shocks and outflows from young stars because it is extremely sensitive to both the physical conditions associated with the interaction of supersonic outflows with the ambient medium and the chemical processes at play.Aims. Our goal is to investigate the spatial and velocity distribution of H2O along outflows, its relationship with other tracers, and its abundance variations. In particular, this study focuses on the outflow driven by the low-mass protostar L1448-C, which previous observations have shown to be one of the brightest H2O emitters among the class 0 outflows.Methods. To this end, maps of the o-H2O 1(10)-1(01) and 2(12)-1(01) transitions taken with the Herschel-HIFI and PACS instruments, respectively, are presented. For comparison, complementary maps of the CO(3-2) and SiO(8-7) transitions, obtained at the JCMT, and the H-2 S(0) and S(1) transitions, taken from the literature, were used as well. Physical conditions and H2O column densities were inferred using large velocity gradient radiative transfer calculations.Results. The water distribution appears to be clumpy, with individual peaks corresponding to shock spots along the outflow. The bulk of the 557 GHz line is confined to radial velocities in the range +/- 10-50 km s(-1), but extended emission at extreme velocities (up to v(r) similar to 80 km s(-1)) is detected and is associated with the L1448-C extreme high-velocity (EHV) jet. The H2O 1(10)-1(01)/CO(3-2) ratio shows strong variations as a function of velocity that likely reflect different and changing physical conditions in the gas that is responsible for the emissions from the two species. In the EHV jet, a low H2O/SiO abundance ratio is inferred, which could indicate molecular formation from dust-free gas directly ejected from the proto-stellar wind. The ratio between the two observed H2O lines and the comparison with H-2 indicate averaged T-kin and n(H-2) values of similar to 300-500 K and 5 x 10(6) cm(-3), respectively, while a water abundance with respect to H-2 of about 0.5-1x10(-6) along the outflow is estimated, in agreement with results found by previous studies. The fairly constant conditions found all along the outflow imply that evolutionary effects on the timescales of outflow propagation do not play a major role in the H2O chemistry.Conclusions. The results of our analysis show that the bulk of the observed H2O lines comes from post-shocked regions where the gas, after being heated to high temperatures, has already been cooled down to a few hundred K. The relatively low derived abundances, however, call for some mechanism that diminishes the H2O gas in the post-shock region. Among the possible scenarios, we favor H2O photodissociation, which requires the superposition of a low-velocity nondissociative shock with a fast dissociative shock able to produce a far-ultraviolet field of sufficient strength.
  •  
25.
  • Santangelo, G., et al. (författare)
  • First spectrally-resolved H-2 observations towards HH 54 Low H2O abundance in shocks
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569, s. Art. no. L8-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Herschel observations suggest that the H2O distribution in outflows from low-mass stars resembles the H-2 emission. It is still unclear which of the different excitation components that characterise the mid-and near-IR H-2 distribution is associated with H2O. Aims. The aim is to spectrally resolve the different excitation components observed in the H-2 emission. This will allow us to identify the H-2 counterpart associated with H2O and finally derive directly an H2O abundance estimate with respect to H-2. Methods. We present new high spectral resolution observations of H-2 0-0 S(4), 0-0 S(9), and 1-0 S(1) towards HH 54, a bright nearby shock region in the southern sky. In addition, new Herschel/HIFI H2O (2(12)-1(01)) observations at 1670 GHz are presented. Results. Our observations show for the first time a clear separation in velocity of the different H-2 lines: the 0-0 S(4) line at the lowest excitation peaks at -7 kms(-1), while the more excited 0-0 S(9) and 1-0 S(1) lines peak at -15 km s(-1). H2O and high-J CO appear to be associated with the H-2 0-0 S(4) emission, which traces a gas component with a temperature of 700-1000 K. The H2O abundance with respect to H-2 0-0 S(4) is estimated to be X(H2O)
  •  
26.
  • Santangelo, G., et al. (författare)
  • Herschel-PACS observations of shocked gas associated with the jets of L1448 and L1157
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 557
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. In the framework of the Water In Star-forming regions with Herschel (WISH) key program, several H2O (E-u > 190 K), high-J CO, [OI], and OH transitions are mapped with Herschel-PACS in two shock positions along two prototypical outflows around the low-luminosity sources L1448 and L1157. Previous Herschel-HIFI H2O observations (E-u = 53-249 K) are also used. The aim is to derive a complete picture of the excitation conditions at the selected shock positions.Methods. We adopted a large velocity gradient analysis (LVG) to derive the physical parameters of the H2O and CO emitting gas. Complementary Spitzer mid-IR H-2 data were used to derive the H2O abundance.Results. Consistent with other studies, at all selected shock spots a close spatial association between H2O, mid-IR H-2, and high-J CO emission is found, whereas the low-J CO emission traces either entrained ambient gas or a remnant of an older shock. The excitation analysis, conducted in detail at the L1448-B2 position, suggests that a two-component model is needed to reproduce the H2O, CO, and mid-IR H-2 lines: an extended warm component (T similar to 450 K) is traced by the H2O emission with E-u = 53-137 K and by the CO lines up to J = 22-21, and a compact hot component (T = 1100 K) is traced by the H2O emission with E-u > 190 K and by the higher-J CO transitions. At L1448-B2 we obtain an H2O abundance (3-4) x 10(-6) for the warm component and (0.3-1.3) x 10(-5) for the hot component and a CO abundance of a few 10-5 in both components. In L1448-B2 we also detect OH and blue-shifted [OI] emission, spatially coincident with the other molecular lines and with [FeII] emission. This suggests a dissociative shock for these species, related to the embedded atomic jet. On the other hand, a non-dissociative shock at the point of impact of the jet on the cloud is responsible for the (HO)-O-2 and CO emission. The other examined shock positions show an H2O excitation similar to L1448-B2, but a slightly higher (HO)-O-2 abundance (a factor of similar to 4).Conclusions. The two gas components may represent a gas stratification in the post-shock region. The extended and low-abundance warm component traces the post-shocked gas that has already cooled down to a few hundred Kelvin, whereas the compact and possibly higher-abundance hot component is associated with the gas that is currently undergoing a shock episode. This hot gas component is more affected by evolutionary effects on the timescales of the outflow propagation, which explains the observed H2O abundance variations.
  •  
27.
  • Santangelo, G., et al. (författare)
  • The Herschel HIFI water line survey in the low-mass proto-stellar outflow L1448
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 538
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. As part of the WISH (Water In Star-forming regions with Herschel) key project, systematic observations of H2O transitions in young outflows are being carried out with the aim of understanding the role of water in shock chemistry and its physical and dynamical properties. We report on the observations of several ortho-and para-H2O lines performed with the HIFI instrument toward two bright shock spots (R4 and B2) along the outflow driven by the L1448 low-mass proto-stellar system, located in the Perseus cloud. These data are used to identify the physical conditions giving rise to the H2O emission and to infer any dependence on velocity. Methods. We used a large velocity gradient (LVG) analysis to derive the main physical parameters of the emitting regions, namely n(H-2), T-kin, N(H2O) and emitting-region size. We compared these with other main shock tracers, such as CO, SiO and H-2 and with shock models available in the literature. Results. These observations provide evidence that the observed water lines probe a warm (T-kin similar to 400-600 K) and very dense (n similar to 10(6)-10(7) cm(-3)) gas that is not traced by other molecules, such as low-J CO and SiO, but is traced by mid-IR H-2 emission. In particular, H2O shows strong differences with SiO in the excitation conditions and in the line profiles in the two observed shocked positions, pointing to chemical variations across the various velocity regimes and chemical evolution in the different shock spots. Physical and kinematical differences can be seen at the two shocked positions. At the R4 position, two velocity components with different excitation can be distinguished, of which the component at higher velocity (R4-HV) is less extended and less dense than the low velocity component (R4-LV). H2O column densities of about 2 x 10(13) and 4 x 10(14) cm(-2) were derived for the R4-LV and the R4-HV components, respectively. The conditions inferred for the B2 position are similar to those of the R4-HV component, with H2O column density in the range 10(14)-5 x 10(14) cm(-2), corresponding to H2O/H-2 abundances in the range 0.5-1 x 10(-5). The observed line ratios and the derived physical conditions seem to be more consistent with excitation in a low-velocity J-type shock with strong compression rather than in a stationary C-shock, although none of these stationary models seems able to reproduce the whole characteristics of the observed emission.
  •  
28.
  • Santangelo, G., et al. (författare)
  • Water distribution in shocked regions of the NGC 1333-IRAS 4A protostellar outflow
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568, s. Article no. A125-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key molecule in protostellar environments because its line emission is very sensitive to both the chemistry and the physical conditions of the gas. Observations of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observatory have highlighted the complexity of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ line profiles, in which different kinematic components can be distinguished. Aims. The goal is to study the spatial distribution of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ, in particular of the different kinematic components detected in H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ emission, at two bright shocked regions along IRAS 4A, one of the strongest H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ emitters among the Class 0 outflows. Methods. We obtained Herschel-PACS maps of the IRAS 4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38'' at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. A large velocity gradient (LVG) analysis was performed to determine the excitation conditions of the gas. Results. We detect four H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ lines and CO (16-15) at the two selected shocked positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the LVG analysis of the H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observ emission suggests that the compact (about 32, corresponding to about 700 AU) component is associated with a hot (T similar to 1000 K) gas with densities n(H2) similar to (1-4) x 10(5) cm(-3), whereas the extended (10 ''-17 '', corresponding to 2400-4000 AU) one traces a warm (T similar to 300-500 K) and dense gas (n(H2) similar to (3-5) x 10(7) cm(-3)). Finally, using the CO (16-15) emission observed at R2 and assuming a typical CO/H-2 abundance of 10(-4), we estimate the H2O/H-2 abundance of the warm and hot components to be (7-10) x 10(-7) and (3-7) x 10(-5). Conclusions. Our data allowed us, for the first time, to resolve spatially the two temperature components previously observed with HIFI and PACS. We propose that the compact hot component may be associated with the jet that impacts the surrounding material, whereas the warm, dense, and extended component originates from the compression of the ambient gas by the propagating flow.
  •  
29.
  • Vasta, M., et al. (författare)
  • Water emission from the chemically rich outflow L1157
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. Article Number: A98 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the framework of the Herschel-WISH key program, several ortho-H2O and para-H2O emission lines, in the frequency range from 500 to 1700 GHz, were observed with the HIFI instrument in two bow-shock regions (B2 and R) of the L1157 cloud, which hosts what is considered to be the prototypical chemically-rich outflow. Aims. Our primary aim is to analyse water emission lines as a diagnostic of the physical conditions in the blue (B2) and red-shifted (R) lobes to compare the excitation conditions. Methods. For this purpose, we ran the non-LTE RADEX model for a plane-parallel geometry to constrain the physical parameters (T-kin, N-H2O and nH(2)) of the water emission lines detected. Results. A total of 5 ortho- and para-(H2O)-O-16 plus one o-(H2O)-O-18 transitions were observed in B2 and R with a wide range of excitation energies (27K = 300 K). The presence of the broad red-shifted wings and multiple peaks in the spectra of the R region, prompted the modelling of two components. High velocities are associated with relatively low temperatures (similar to 100 K), N-H2O similar or equal to 5 x 10(12)-5 x 10(13) cm(-2) and densities nH(2) similar or equal to 10(6)-10(8) cm(-3). Lower velocities are associated with higher excitation conditions with T-kin >= 300 K, very dense gas (nH(2) similar to 10(8) cm(-3)) and low column density (N-H2O = 15 '') region, whilst we cannot rule out the possibility that the emission in R arises from a smaller (>3 '') region. In this context, H2O seems to be important in tracing different gas components with respect to other molecules, e.g. such as SiO, a classical jet tracer. We compare a grid of C-and J-type shocks spanning different velocities (10 to 40 km s(-1)) and two pre-shock densities (2 x 10(4) and 2 x 10(5) cm(-3)), with the observed intensities. Although none of these models seem to be able to reproduce the absolute intensities of the water emissions observed, it appears that the occurrence of J-shocks, which can compress the gas to very high densities, cannot be ruled out in these environments.
  •  
30.
  • Visvanathan, Sudha, et al. (författare)
  • The effect of infliximab plus methotrexate on the modulation of inflammatory disease markers in juvenile idiopathic arthritis: analyses from a randomized, placebo-controlled trial.
  • 2010
  • Ingår i: Pediatric rheumatology online journal. - : Springer Science and Business Media LLC. - 1546-0096. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: We evaluated the effect of infliximab on markers of inflammation in patients with juvenile idiopathic arthritis (JIA). METHODS: In this randomized, placebo-controlled substudy, 122 patients with JIA received infliximab 3 mg/kg + methotrexate (MTX)(n = 60) or placebo + MTX (n = 62) at weeks 0, 2, and 6. At week 14, patients receiving placebo + MTX crossed over to infliximab 6 mg/kg + MTX; patients receiving infliximab 3 mg/kg + MTX continued treatment through week 44. Sera and plasma from eligible patients receiving infliximab 3 mg/kg + MTX (n = 34) and receiving placebo→infliximab 6 mg/kg +MTX (n = 38) were collected at weeks 0, 2, 14, 16, 28, and 52 and analyzed for inflammatory markers (IL-6, IL-12p40, ICAM-1, MMP-3, VEGF, TNF-α, and CRP). RESULTS: At week 2, decreases from baseline in IL-6, ICAM-1, MMP-3, TNF-α, and CRP were greater with infliximab versus placebo treatment, and with the exception of CRP, these differences were generally maintained through week 14. The decreases from baseline to week 52 in IL-6, ICAM-1, VEGF, MMP-3, and CRP and increases in IL-12p40 levels were larger in patients receiving placebo→infliximab 6 mg/kg +MTX versus infliximab 3 mg/kg + MTX treatment. Patients receiving infliximab 3 mg/kg+MTX who achieved an American College of Rheumatology Pediatric 30 (ACR-Pedi-30) response had significantly larger decreases from baseline in ICAM-1 (p = 0.0105) and MMP-3 (p = 0.0253) at week 2 and in ICAM-1 (p = 0.0304), MMP-3 (p = 0.0091), and CRP (p = 0.0011) at week 14 versus ACR-Pedi-30 nonresponders. CONCLUSION: Infliximab + MTX attenuated several inflammatory markers in patients with JIA; larger decreases in ICAM-1, MMP-3, and CRP levels were observed in ACR-Pedi-30 responders versus nonresponders. TRIAL REGISTRATION: NCT00036374.
  •  
31.
  • Wampfler, S. F., et al. (författare)
  • OH far-infrared emission from low- and intermediate-mass protostars surveyed with Herschel-PACS
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552, s. A56-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The OH radical is a key species in the water chemistry network of star-forming regions, because its presence is tightly related to the formation and destruction of water. Previous studies of the OH far-infrared emission from low-and intermediate-mass protostars suggest that the OH emission mainly originates from shocked gas and not from the quiescent protostellar envelopes. Aims. We aim to study the excitation of OH in embedded low-and intermediate-mass protostars, determine the influence of source parameters on the strength of the emission, investigate the spatial extent of the OH emission, and further constrain its origin. Methods. This paper presents OH observations from 23 low-and intermediate-mass young stellar objects obtained with the PACS integral field spectrometer on-board Herschel in the context of the Water In Star-forming regions with Herschel (WISH) key program. Radiative transfer codes are used to model the OH excitation. Results. Most low-mass sources have compact OH emission (less than or similar to 5000 AU scale), whereas the OH lines in most intermediate-mass sources are extended over the whole 47 ''.0 x 47 ''.0 PACS detector field-of-view (greater than or similar to 20 000 AU). The strength of the OH emission is correlated with various source properties such as the bolometric luminosity and the envelope mass, but also with the [OI] and H2O emission. Rotational diagrams for sources with many OH lines show that the level populations of OH can be approximated by a Boltzmann distribution with an excitation temperature at around 70 K. Radiative transfer models of spherically symmetric envelopes cannot reproduce the OH emission fluxes nor their broad line widths, strongly suggesting an outflow origin. Slab excitation models indicate that the observed excitation temperature can either be reached if the OH molecules are exposed to a strong far-infrared continuum radiation field or if the gas temperature and density are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong radiation field and/or a high density to excite the OH molecules points toward an origin in shocks in the inner envelope close to the protostar.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-31 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy