SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giese C) srt2:(2015-2019)"

Sökning: WFRF:(Giese C) > (2015-2019)

  • Resultat 1-26 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pulit, S. L., et al. (författare)
  • Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
  • 2018
  • Ingår i: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
  •  
2.
  • Marini, S., et al. (författare)
  • Association of Apolipoprotein E With Intracerebral Hemorrhage Risk by Race/Ethnicity A Meta-analysis
  • 2019
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 76:4, s. 480-491
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Genetic studies of intracerebral hemorrhage (ICH) have focused mainly on white participants, but genetic risk may vary or could be concealed by differing nongenetic coexposures in nonwhite populations. Transethnic analysis of risk may clarify the role of genetics in ICH risk across populations. OBJECTIVE To evaluate associations between established differences in ICH risk by race/ethnicity and the variability in the risks of apolipoprotein E (APOE) epsilon 4 alleles, the most potent genetic risk factor for ICH. DESIGN, SETTING, AND PARTICIPANTS This case-control study of primary ICH meta-analyzed the association of APOE allele status on ICH risk, applying a 2-stage clustering approach based on race/ethnicity and stratified by a contributing study. A propensity score analysis was used to model the association of APOE with the burden of hypertension across race/ethnic groups. Primary ICH cases and controls were collected from 3 hospital- and population-based studies in the United States and 8 in European sites in the International Stroke Genetic Consortium. Participants were enrolled from January 1, 1999, to December 31, 2017. Participants with secondary causes of ICH were excluded from enrollment. Controls were regionally matched within each participating study. MAIN OUTCOMES AND MEASURES Clinical variables were systematically obtained from structured interviews within each site. APOE genotype was centrally determined for all studies. RESULTS In total, 13 124 participants (7153 [54.5%] male with a median [interquartile range] age of 66 [56-76] years) were included. In white participants, APOE epsilon 2 (odds ratio [OR], 1.49; 95% CI, 1.24-1.80; P < .001) and APOE epsilon 4 (OR, 1.51; 95% CI, 1.23-1.85; P < .001) were associated with lobar ICH risk; however, within self-identified Hispanic and black participants, no associations were found. After propensity score matching for hypertension burden, APOE epsilon 4 was associated with lobar ICH risk among Hispanic (OR, 1.14; 95% CI, 1.03-1.28; P = .01) but not in black (OR, 1.02; 95% CI, 0.98-1.07; P = .25) participants. APOE epsilon 2 and epsilon 4 did not show an association with nonlobar ICH risk in any race/ethnicity. CONCLUSIONS AND RELEVANCE APOE epsilon 4 and epsilon 2 alleles appear to affect lobar ICH risk variably by race/ethnicity, associations that are confirmed in white individuals but can be shown in Hispanic individuals only when the excess burden of hypertension is propensity score-matched; further studies are needed to explore the interactions between APOE alleles and environmental exposures that vary by race/ethnicity in representative populations at risk for ICH.
  •  
3.
  •  
4.
  • Franceschini, N., et al. (författare)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
5.
  • Pulit, SL, et al. (författare)
  • Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study.
  • 2016
  • Ingår i: The Lancet. Neurology. - 1474-4465. ; 15:2, s. 174-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading genetic approach to the identification of novel biological pathways underlying diseases in humans. Until recently, GWAS in ischaemic stroke have been limited by small sample sizes and have yielded few loci associated with ischaemic stroke. We did a large-scale GWAS to identify additional susceptibility genes for stroke and its subtypes.To identify genetic loci associated with ischaemic stroke, we did a two-stage GWAS. In the first stage, we included 16851 cases with state-of-the-art phenotyping data and 32473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtypes of ischaemic stroke were recorded by centrally trained and certified investigators who used the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identifying samples that were genotyped on nearly identical arrays and were of similar genetic ancestral background. We cleaned and imputed data by use of dense imputation reference panels generated from whole-genome sequence data. We did genome-wide testing to identify stroke-associated loci within each stratum for each available phenotype, and we combined summary-level results using inverse variance-weighted fixed-effects meta-analysis. In the second stage, we did in-silico lookups of 1372 single nucleotide polymorphisms identified from the first stage GWAS in 20941 cases and 364736 unique stroke-free controls. The ischaemic stroke subtypes of these cases had previously been established with the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification system, in accordance with local standards. Results from the two stages were then jointly analysed in a final meta-analysis.We identified a novel locus (G allele at rs12122341) at 1p13.2 near TSPAN2 that was associated with large artery atherosclerosis-related stroke (first stage odds ratio [OR] 1·21, 95% CI 1·13-1·30, p=4·50×10(-8); joint OR 1·19, 1·12-1·26, p=1·30×10(-9)). Our results also supported robust associations with ischaemic stroke for four other loci that have been reported in previous studies, including PITX2 (first stage OR 1·39, 1·29-1·49, p=3·26×10(-19); joint OR 1·37, 1·30-1·45, p=2·79×10(-32)) and ZFHX3 (first stage OR 1·19, 1·11-1·27, p=2·93×10(-7); joint OR 1·17, 1·11-1·23, p=2·29×10(-10)) for cardioembolic stroke, and HDAC9 (first stage OR 1·29, 1·18-1·42, p=3·50×10(-8); joint OR 1·24, 1·15-1·33, p=4·52×10(-9)) for large artery atherosclerosis stroke. The 12q24 locus near ALDH2, which has previously been associated with all ischaemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke (first stage OR 1·20, 1·12-1·28, p=6·82×10(-8); joint OR 1·17, 1·11-1·23, p=2·92×10(-9)). Other loci associated with stroke in previous studies, including NINJ2, were not confirmed.Our results suggest that all ischaemic stroke-related loci previously implicated by GWAS are subtype specific. We identified a novel gene associated with large artery atherosclerosis stroke susceptibility. Follow-up studies will be necessary to establish whether the locus near TSPAN2 can be a target for a novel therapeutic approach to stroke prevention. In view of the subtype-specificity of the associations detected, the rich phenotyping data available in the Stroke Genetics Network (SiGN) are likely to be crucial for further genetic discoveries related to ischaemic stroke.US National Institute of Neurological Disorders and Stroke, National Institutes of Health.
  •  
6.
  • Valdes-Marquez, E., et al. (författare)
  • Relative effects of LDL-C on ischemic stroke and coronary disease A Mendelian randomization study
  • 2019
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 92:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To examine the causal relevance of lifelong differences in low-density lipoprotein cholesterol (LDL-C) for ischemic stroke (IS) relative to that for coronary heart disease (CHD) using a Mendelian randomization approach. We undertook a 2-sample Mendelian randomization, based on summary data, to estimate the causal relevance of LDL-C for risk of IS and CHD. Information from 62 independent genetic variants with genome-wide significant effects on LDL-C levels was used to estimate the causal effects of LDL-C for IS and IS subtypes (based on 12,389 IS cases from METASTROKE) and for CHD (based on 60,801 cases from CARDIoGRAMplusC4D). We then assessed the effects of LDL-C on IS and CHD for heterogeneity. A 1 mmol/L higher genetically determined LDL-C was associated with a 50% higher risk of CHD (odds ratio [OR] 1.49, 95% confidence interval [CI] 1.32-1.68, p = 1.1 x 10(-8)). By contrast, the causal effect of LDL-C was much weaker for IS (OR 1.12, 95% CI 0.96-1.30, p = 0.14; p for heterogeneity = 2.6 x 10(-3)) and, in particular, for cardioembolic stroke (OR 1.06, 95% CI 0.84-1.33, p = 0.64; p for heterogeneity = 8.6 x 10(-3)) when compared with that for CHD. In contrast with the consistent effects of LDL-C-lowering therapies on IS and CHD, genetic variants that confer lifelong LDL-C differences show a weaker effect on IS than on CHD. The relevance of etiologically distinct IS subtypes may contribute to the differences observed.
  •  
7.
  •  
8.
  •  
9.
  • Cheng, Yu-Ching, et al. (författare)
  • Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2.
  • 2016
  • Ingår i: Stroke; a journal of cerebral circulation. - 1524-4628. ; 47:2, s. 307-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years.
  •  
10.
  • Fazekas, F., et al. (författare)
  • Brain Magnetic Resonance Imaging Findings Fail to Suspect Fabry Disease in Young Patients With an Acute Cerebrovascular Event
  • 2015
  • Ingår i: Stroke. - : Ovid Technologies (Wolters Kluwer Health). - 0039-2499 .- 1524-4628. ; 46:6, s. 1548-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-Fabry disease (FD) may cause stroke and is reportedly associated with typical brain findings on magnetic resonance imaging (MRI). In a large group of young patients with an acute cerebrovascular event, we wanted to test whether brain MRI findings can serve to suggest the presence of FD. Methods-The Stroke in Young Fabry Patients (SIFAP 1) study prospectively collected clinical, laboratory, and radiological data of 5023 patients (18-55 years) with an acute cerebrovascular event. Their MRI was interpreted centrally and blinded to all other information. Biochemical findings and genetic testing served to diagnose FD in 45 (0.9%) patients. We compared the imaging findings between FD and non-FD patients in patients with at least a T2-weighted MRI of good quality. Results-A total of 3203 (63.8%) patients had the required MRI data set. Among those were 34 patients with a diagnosis of FD (1.1%), which was definite in 21 and probable in 13 cases. The median age of patients with FD was slightly lower (45 versus 46 years) and women prevailed (70.6% versus 40.7%; P<0.001). Presence or extent of white matter hyperintensities, infarct localization, vertebrobasilar artery dilatation, T1-signal hyperintensity of the pulvinar thalami, or any other MRI finding did not distinguish patients with FD from non-FD cerebrovascular event patients. Pulvinar hyperintensity was not present in a single patient with FD but seen in 6 non-FD patients. Conclusions-Brain MRI findings cannot serve to suspect FD in young patients presenting with an acute cerebrovascular event. This deserves consideration in the search for possible causes of young patients with stroke.
  •  
11.
  • Tanislav, C., et al. (författare)
  • Frequency and predictors of acute ischaemic lesions on brain magnetic resonance imaging in young patients with a clinical diagnosis of transient ischaemic attack
  • 2016
  • Ingår i: European Journal of Neurology. - : Wiley. - 1351-5101. ; 23:7, s. 1174-1182
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purposeAcute lesions in patients with transient ischaemic attack (TIA) are important as they are associated with increased risk for recurrence. Characteristics associated with acute lesions in young TIA patients were therefore investigated. MethodsThe sifap1 study prospectively recruited a multinational European cohort (n = 5023) of patients aged 18-55 years with acute cerebrovascular event. The detection of acute ischaemic lesions was based on diffusion-weighted imaging (DWI). The frequency of DWI lesions was assessed in 829 TIA patients who met the criteria of symptom duration <24 h and their association with demographic, clinical and imaging variables was analysed. ResultsThe median age was 46 years (interquartile range 40-51 years); 45% of the patients were female. In 121 patients (15%) 1 acute DWI lesion was detected. In 92 patients, DWI lesions were found in the anterior circulation, mostly located in cortical-subcortical areas (n = 63). Factors associated with DWI lesions in multiple regression analysis were left hemispheric presenting symptoms [odds ratio (OR) 1.92, 95% confidence interval (CI) 1.27-2.91], dysarthria (OR 2.17, 95% CI 1.38-3.43) and old brain infarctions on MRI (territories of the middle and posterior cerebral artery: OR 2.43, 95% CI 1.42-4.15; OR 2.41, 95% CI 1.02-5.69, respectively). ConclusionsIn young patients with a clinical TIA 15% demonstrated acute DWI lesions on brain MRI, with an event pattern highly suggestive of an embolic origin. Except for the association with previous infarctions there was no clear clinical predictor for acute ischaemic lesions, which indicates the need to obtain MRI in young individuals with TIA.
  •  
12.
  • Thijs, V., et al. (författare)
  • Dolichoectasia and Small Vessel Disease in Young Patients With Transient Ischemic Attack and Stroke
  • 2017
  • Ingår i: Stroke. - : Ovid Technologies (Wolters Kluwer Health). - 0039-2499 .- 1524-4628. ; 48:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-We evaluated whether basilar dolichoectasia is associated with markers of cerebral small vessel disease in younger transient ischemic attack and ischemic stroke patients. Methods-We used data from the SIFAP1 study (Stroke in Young Fabry Patients), a large prospective, hospital-based, screening study for Fabry disease in young (<55 years) transient ischemic attack/stroke patients in whom detailed clinical data and brain MRI were obtained, and stroke subtyping with TOAST classification (Trial of ORG 10172 in Acute Stroke Treatment) was performed. Results-Dolichoectasia was found in 508 of 3850 (13.2%) of patients. Dolichoectasia was associated with older age (odds ratio per decade, 1.26; 95% confidence interval, 1.09-1.44), male sex (odds ratio, 1.96; 95% confidence interval, 1.592.42), and hypertension (odds ratio, 1.39; 95% confidence interval, 1.13-1.70). Dolichoectasia was more common in patients with small infarctions (33.9% versus 29.8% for acute lesions, P=0.065; 29.1% versus 16.5% for old lesions, P<0.001), infarct location in the brain stem (12.4% versus 6.9%, P<0.001), and in white matter (27.8% versus 21.1%, P=0.001). Microbleeds (16.3% versus 4.7%, P=0.001), higher grades of white matter hyperintensities (P<0.001), and small vessel disease subtype (18.1% versus 12.4%, overall P for differences in TOAST (P=0.018) were more often present in patients with dolichoectasia. Conclusions-Dolichoectasia is associated with imaging markers of small vessel disease and brain stem localization of acute and old infarcts in younger patients with transient ischemic attack and ischemic stroke.
  •  
13.
  • Giese, A. K., et al. (författare)
  • Design and rationale for examining neuroimaging genetics in ischemic stroke The MRI-GENIE study
  • 2017
  • Ingår i: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study.& para;& para;Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease.& para;& para;Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
  •  
14.
  •  
15.
  •  
16.
  • Minikel, EV, et al. (författare)
  • Quantifying prion disease penetrance using large population control cohorts
  • 2016
  • Ingår i: Science translational medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 8:322, s. 322ra9-
  • Tidskriftsartikel (refereegranskat)abstract
    • Large genomic reference data sets reveal a spectrum of pathogenicity in the prion protein gene and provide genetic validation for a therapeutic strategy in prion disease.
  •  
17.
  • Schirmer, M. D., et al. (författare)
  • White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts - The MRI-GENIE study
  • 2019
  • Ingår i: Neuroimage-Clinical. - : Elsevier BV. - 2213-1582. ; 23
  • Tidskriftsartikel (refereegranskat)abstract
    • White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked to prediction of diagnosis and prognosis of diseases, such as acute ischemic stroke (AIS). However, current approaches to its quantification on clinical MRI often rely on time intensive manual delineation of the disease on T2 fluid attenuated inverse recovery (FLAIR), which hinders high-throughput analyses such as genetic discovery. In this work, we present a fully automated pipeline for quantification of WMH in clinical large-scale studies of AIS. The pipeline incorporates automated brain extraction, intensity normalization and WMH segmentation using spatial priors. We first propose a brain extraction algorithm based on a fully convolutional deep learning architecture, specifically designed for clinical FLAIR images. We demonstrate that our method for brain extraction outperforms two commonly used and publicly available methods on clinical quality images in a set of 144 subject scans across 12 acquisition centers, based on dice coefficient (median 0.95; inter-quartile range 0.94-0.95; p < 0.01) and Pearson correlation of total brain volume (r = 0.90). Subsequently, we apply it to the large-scale clinical multi-site MRI-GENIE study (N = 2783) and identify a decrease in total brain volume of -2.4 cc/year. Additionally, we show that the resulting total brain volumes can successfully be used for quality control of image preprocessing. Finally, we obtain WMH volumes by building on an existing automatic WMH segmentation algorithm that delineates and distinguishes between different cerebrovascular pathologies. The learning method mimics expert knowledge of the spatial distribution of the WMH burden using a convolutional auto-encoder. This enables successful computation of WMH volumes of 2533 clinical AIS patients. We utilize these results to demonstrate the increase of WMH burden with age (0.950 cc/year) and show that single site estimates can be biased by the number of subjects recruited.
  •  
18.
  • Wu, O., et al. (författare)
  • Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data
  • 2019
  • Ingår i: Stroke. - : Ovid Technologies (Wolters Kluwer Health). - 0039-2499 .- 1524-4628. ; 50:7, s. 1734-1741
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (rho=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm(3) (0.9-16.6 cm(3)). Patients with small artery occlusion stroke subtype had smaller lesion volumes (P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.
  •  
19.
  • Cole, John W, et al. (författare)
  • Genetics of the thrombomodulin-endothelial cell protein C receptor system and the risk of early-onset ischemic stroke.
  • 2018
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 13:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymorphisms in coagulation genes have been associated with early-onset ischemic stroke. Here we pursue an a priori hypothesis that genetic variation in the endothelial-based receptors of the thrombomodulin-protein C system (THBD and PROCR) may similarly be associated with early-onset ischemic stroke. We explored this hypothesis utilizing a multi-stage design of discovery and replication.Discovery was performed in the Genetics-of-Early-Onset Stroke (GEOS) Study, a biracial population-based case-control study of ischemic stroke among men and women aged 15-49 including 829 cases of first ischemic stroke (42.2% African-American) and 850 age-comparable stroke-free controls (38.1% African-American). Twenty-four single-nucleotide-polymorphisms (SNPs) in THBD and 22 SNPs in PROCR were evaluated. Following LD pruning (r2≥0.8), we advanced uncorrelated SNPs forward for association analyses. Associated SNPs were evaluated for replication in an early-onset ischemic stroke population (onset-age<60 years) consisting of 3676 cases and 21118 non-stroke controls from 6 case-control studies. Lastly, we determined if the replicated SNPs also associated with older-onset ischemic stroke in the METASTROKE data-base.Among GEOS Caucasians, PROCR rs9574, which was in strong LD with 8 other SNPs, and one additional independent SNP rs2069951, were significantly associated with ischemic stroke (rs9574, OR = 1.33, p = 0.003; rs2069951, OR = 1.80, p = 0.006) using an additive-model adjusting for age, gender and population-structure. Adjusting for risk factors did not change the associations; however, associations were strengthened among those without risk factors. PROCR rs9574 also associated with early-onset ischemic stroke in the replication sample (OR = 1.08, p = 0.015), but not older-onset stroke. There were no PROCR associations in African-Americans, nor were there any THBD associations in either ethnicity.PROCR polymorphisms are associated with early-onset ischemic stroke in Caucasians.
  •  
20.
  • Giese, Anne Katrin, et al. (författare)
  • Design and rationale for examining neuroimaging genetics in ischemic stroke : The MRI-GENIE study
  • 2017
  • Ingår i: Neurology: Genetics. - 2376-7839. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributedMRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include themanual and automated assessments of established MRI markers. A high-throughputMRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease.Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
  •  
21.
  • Höglinger, Günter U, et al. (författare)
  • Clinical diagnosis of progressive supranuclear palsy : The movement disorder society criteria
  • 2017
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185. ; 32:6, s. 853-864
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: PSP is a neuropathologically defined disease entity. Clinical diagnostic criteria, published in 1996 by the National Institute of Neurological Disorders and Stroke/Society for PSP, have excellent specificity, but their sensitivity is limited for variant PSP syndromes with presentations other than Richardson's syndrome. Objective: We aimed to provide an evidence- and consensus-based revision of the clinical diagnostic criteria for PSP. Methods: We searched the PubMed, Cochrane, Medline, and PSYCInfo databases for articles published in English since 1996, using postmortem diagnosis or highly specific clinical criteria as the diagnostic standard. Second, we generated retrospective standardized clinical data from patients with autopsy-confirmed PSP and control diseases. On this basis, diagnostic criteria were drafted, optimized in two modified Delphi evaluations, submitted to structured discussions with consensus procedures during a 2-day meeting, and refined in three further Delphi rounds. Results: Defined clinical, imaging, laboratory, and genetic findings serve as mandatory basic features, mandatory exclusion criteria, or context-dependent exclusion criteria. We identified four functional domains (ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction) as clinical predictors of PSP. Within each of these domains, we propose three clinical features that contribute different levels of diagnostic certainty. Specific combinations of these features define the diagnostic criteria, stratified by three degrees of diagnostic certainty (probable PSP, possible PSP, and suggestive of PSP). Clinical clues and imaging findings represent supportive features. Conclusions: Here, we present new criteria aimed to optimize early, sensitive, and specific clinical diagnosis of PSP on the basis of currently available evidence.
  •  
22.
  • Respondek, Gesine, et al. (författare)
  • Which ante mortem clinical features predict progressive supranuclear palsy pathology?
  • 2017
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185. ; 32:7, s. 995-1005
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Progressive supranuclear palsy (PSP) is a neuropathologically defined disease presenting with a broad spectrum of clinical phenotypes. Objective: To identify clinical features and investigations that predict or exclude PSP pathology during life, aiming at an optimization of the clinical diagnostic criteria for PSP. Methods: We performed a systematic review of the literature published since 1996 to identify clinical features and investigations that may predict or exclude PSP pathology. We then extracted standardized data from clinical charts of patients with pathologically diagnosed PSP and relevant disease controls and calculated the sensitivity, specificity, and positive predictive value of key clinical features for PSP in this cohort. Results: Of 4166 articles identified by the database inquiry, 269 met predefined standards. The literature review identified clinical features predictive of PSP, including features of the following 4 functional domains: ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction. No biomarker or genetic feature was found reliably validated to predict definite PSP. High-quality original natural history data were available from 206 patients with pathologically diagnosed PSP and from 231 pathologically diagnosed disease controls (54 corticobasal degeneration, 51 multiple system atrophy with predominant parkinsonism, 53 Parkinson's disease, 73 behavioral variant frontotemporal dementia). We identified clinical features that predicted PSP pathology, including phenotypes other than Richardson's syndrome, with varying sensitivity and specificity. Conclusions: Our results highlight the clinical variability of PSP and the high prevalence of phenotypes other than Richardson's syndrome. The features of variant phenotypes with high specificity and sensitivity should serve to optimize clinical diagnosis of PSP.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Wu, Ona, et al. (författare)
  • Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data
  • 2019
  • Ingår i: Stroke. - 1524-4628. ; 50:7, s. 1734-1741
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (ρ=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm3 (0.9-16.6 cm3). Patients with small artery occlusion stroke subtype had smaller lesion volumes ( P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-26 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy