SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gomis Fons Joaquín) srt2:(2023)"

Sökning: WFRF:(Gomis Fons Joaquín) > (2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Isaksson, Madelène, et al. (författare)
  • An automated buffer management system for small-scale continuous downstream bioprocessing
  • 2023
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673. ; 1695
  • Tidskriftsartikel (refereegranskat)abstract
    • Buffer management for biopharmaceutical purification processes include buffer preparation, storage of buffers and restocking the buffers when needed. This is usually performed manually by the operators for small scale operations. However, buffer management can become a bottleneck when running integrated continuous purification processes for prolonged times, even at small scale. To address this issue, a buffer management system for the application in continuous lab-scale bioprocessing is presented in this paper. For this purpose, an ÄKTA™ explorer chromatography system was reconfigured to perform the buffer formulation. The system formulated all buffers from stock solutions and water according to pre-specified recipes. A digital twin of the physical system was introduced in the research software Orbit, written in python. Orbit was also used for full automation and control of the buffer system, which could run independently without operator input and handle buffer management for one or several connected buffer-consuming purification systems. The developed buffer management system performed automatic monitoring of buffer volumes, buffer order handling as well as buffer preparation and delivery. To demonstrate the capability of the developed system, it was integrated with a continuous downstream process and supplied all 9 required buffers to the process equipment during a 10-day operation. The buffer management system processed 55 orders and delivered 38 L of buffers, corresponding to 20% of its capacity. The pH and conductivity profiles observed during the purification steps were consistent across the cycles. The deviation in conductivity and pH from the measured average value was within ±0.89% in conductivity and ±0.045 in pH, well within the typical specification for buffer release, indicating that the prepared buffers had the correct composition. The operation of the developed buffer management system was robust and fully automated, and provides one solution to the buffer management bottleneck on lab scale for integrated continuous downstream bioprocessing.
  •  
2.
  • São Pedro, Mariana N., et al. (författare)
  • Real-time detection of mAb aggregates in an integrated downstream process
  • 2023
  • Ingår i: Biotechnology and Bioengineering. - 0006-3592. ; 120:10, s. 2989-3000
  • Tidskriftsartikel (refereegranskat)abstract
    • The implementation of continuous processing in the biopharmaceutical industry is hindered by the scarcity of process analytical technologies (PAT). To monitor and control a continuous process, PAT tools will be crucial to measure real-time product quality attributes such as protein aggregation. Miniaturizing these analytical techniques can increase measurement speed and enable faster decision-making. A fluorescent dye (FD)-based miniaturized sensor has previously been developed: a zigzag microchannel which mixes two streams under 30 s. Bis-ANS and CCVJ, two established FDs, were employed in this micromixer to detect aggregation of the biopharmaceutical monoclonal antibody (mAb). Both FDs were able to robustly detect aggregation levels starting at 2.5%. However, the real-time measurement provided by the microfluidic sensor still needs to be implemented and assessed in an integrated continuous downstream process. In this work, the micromixer is implemented in a lab-scale integrated system for the purification of mAbs, established in an ÄKTA™ unit. A viral inactivation and two polishing steps were reproduced, sending a sample of the product pool after each phase directly to the microfluidic sensor for aggregate detection. An additional UV sensor was connected after the micromixer and an increase in its signal would indicate that aggregates were present in the sample. The at-line miniaturized PAT tool provides a fast aggregation measurement, under 10 min, enabling better process understanding and control.
  •  
3.
  • Tallvod, Simon, et al. (författare)
  • Automated quality analysis in continuous downstream processes for small-scale applications
  • 2023
  • Ingår i: Journal of chromatography. A. - 1873-3778. ; 1702
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of integrated, continuous biomanufacturing (ICB) processes brings along the challenge of streamlining the acquisition of data that can be used for process monitoring, product quality testing and process control. Manually performing sample acquisition, preparation, and analysis during process and product development on ICB platforms requires time and labor that diverts attention from the development itself. It also introduces variability in terms of human error in the handling of samples. To address this, a platform for automatic sampling, sample preparation and analysis for use in small-scale biopharmaceutical downstream processes was developed. The automatic quality analysis system (QAS) consisted of an ÄKTA Explorer chromatography system for sample retrieval, storage, and preparation, as well as an Agilent 1260 Infinity II analytical HPLC system for analysis. The ÄKTA Explorer system was fitted with a superloop in which samples could be stored, conditioned, and diluted before being sent to the injection loop of the Agilent system. The Python-based software Orbit, developed at the department of chemical engineering at Lund university, was used to control and create a communication framework for the systems.To demonstrate the QAS in action, a continuous capture chromatography process utilizing periodic counter-current chromatography was set up on an ÄKTA Pure chromatography system to purify the clarified harvest from a bioreactor for monoclonal antibody production. The QAS was connected to the process to collect two types of samples: 1) the bioreactor supernatant and 2) the product pool from the capture chromatography. Once collected, the samples were conditioned and diluted in the superloop before being sent to the Agilent system, where both aggregate content and charge variant composition were determined using size-exclusion and ion-exchange chromatography, respectively. The QAS was successfully implemented during a continuous run of the capture process, enabling the acquisition of process data with consistent quality and without human intervention, clearing the path for automated process monitoring and data-based control.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy