SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gould Ernest A.) srt2:(2020-2022)"

Search: WFRF:(Gould Ernest A.) > (2020-2022)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alfsnes, Kristian, et al. (author)
  • Tracing and tracking the emergence, epidemiology and dispersal of dengue virus to Africa during the 20th century
  • 2021
  • In: One Health. - : Elsevier. - 2352-7714. ; 13
  • Journal article (peer-reviewed)abstract
    • The four mosquito-borne dengue virus serotypes (DENV1-DENV4) cause a high burden of disease throughout the tropical and sub-tropical regions of the world. Nevertheless, their precise epidemiological history in Africa, including when and where they originated and were distributed during the 20th century, remains unclear stressing the need for One Health focused research. Accordingly, we conducted a time-scaled molecular epide-miological reconstruction using publicly available and newly sequenced dengue virus genomes of African origin representing all four serotypes to deduce the most likely temporal and spatial transmission routes of each DENV serotype from their ancestral regions to, within and from Africa. Our analyses suggest that during the 20th century, serotypes DENV1-DENV3 were introduced to Africa from South East Asia on multiple occasions. The earliest evidence recorded indicates introduction of DENV2 during the early-1940s and of DENV1 during the mid-1940s to Western Africa from South East Asia. The analysis also implies an early introduction of DENV4 during the mid-1940s to Western Africa, alongside DENV1, probably originating in South East Asia. Establishment of DENV3 in Africa appears to have occurred later in the 1960s, apparently originating from South East Asia. However, with the re-establishment of DENV in the Americas, following the cessation of the PAHO mosquito control programme during the mid-20th century, evidence of introductions of DENV1 and DENV2 from the Americas to Western Africa was also observed. The data also identify intra-regional circulation of DENV, but also inter-regional dispersal of all four serotypes within Africa, which has led to a high degree of geographical overlap among serotypes. It is also noteworthy that DENV from both Eastern and Western Africa, have been introduced into Central Africa but there is no support for the converse relationship. For serotypes DENV1-DENV3, we observed probable exports from within established African DENV clusters (>= 2 sequences) primarily to Eastern and Southern Asia. Collectively, our findings support the view that all DENV serotypes, apart from DENV4, have been introduced on multiple occasions to Africa, primarily originating from South East Asia, and subsequently to neighbouring regions within Africa.
  •  
2.
  • Ayhan, Nazli, et al. (author)
  • Field surveys in Croatia and North Macedonia reveal two novel phleboviruses circulating in sandflies
  • 2021
  • In: Journal of General Virology. - : Microbiology Society. - 0022-1317 .- 1465-2099. ; 102:11
  • Journal article (peer-reviewed)abstract
    • Sandfly-borne phleboviruses are distributed widely throughout the Mediterranean Basin, presenting a threat to public health in areas where they circulate. However, the true diversity and distribution of pathogenic and apathogenic sandfly-borne phleboviruses remains a key issue to be studied. In the Balkans, most published data rely on serology-based studies although virus isolation has occasionally been reported. Here, we report the discovery of two novel sandfly-borne phleboviruses, provisionally named Zaba virus (ZABAV) and Bregalaka virus (BREV), which were isolated in Croatia and North Macedonia, respectively. This constitutes the first isolation of phleboviruses in both countries. Genetic analysis based on complete coding sequences indicated that ZABAV and BREV are distinct from each other and belong to the genus Phlebovirus, family Phenuiviridae. Phylogenetic and amino acid modelling of viral polymerase shows that ZABAV and BREV are new members of the Salehabad phlebovirus species and the Adana phlebovirus species, respectively. Moreover, sequence-based vector identification suggests that ZABAV is mainly transmitted by Phlebotomus neglectus and BREV is mainly transmitted by Phlebotomus perfiliewi. BREV neutralizing antibodies were detected in 3.3% of human sera with rates up to 16.7% in certain districts, demonstrating that BREV frequently infects humans in North Macedonia. In vitro viral growth kinetics experiments demonstrated viral replication of both viruses in mammalian and mosquito cells. In vivo experimental studies in mice suggest that ZABAV and BREV exhibit characteristics making them possible human pathogens.
  •  
3.
  • Gaunt, Michael W., et al. (author)
  • Recombination of B- and T-cell epitope-rich loci from Aedes- and Culex-borne flaviviruses shapes Zika virus epidemiology
  • 2020
  • In: Antiviral Research. - : Elsevier. - 0166-3542 .- 1872-9096. ; 174
  • Journal article (peer-reviewed)abstract
    • Sporadic human Zika virus (ZIKV) infections have been recorded in Africa and Asia since the 1950s. Major epidemics occurred only after ZIKV emerged in the Pacific islands and spread to the Americas. Specific biological determinants of the explosive epidemic nature of ZIKV have not been identified. Phylogenetic studies revealed incongruence in ZIKV placement in relation to Aedes-borne dengue viruses (DENV) and Cu/ex-borne flaviviruses. We hypothesized that this incongruence reflects interspecies recombination resulting in ZIKV evasion of cross-protective T-cell immunity. We investigated ZIKV phylogenetic incongruence in relation to: DENV T-cell epitope maps experimentally identified ex vivo, published B-cell epitope loci, and CD8(+) T-cell epitopes predicted in silico for mosquito-borne flaviviruses. Our findings demonstrate that the ZIKV proteome is a hybrid of Aedes-borne DENV proteins interspersed amongst Cu/ex-borne flavivirus proteins derived through independent interspecies recombination events. These analyses infer that DENV-associated proteins in the ZIKV hybrid proteome generated immunodominant human B-cell responses, whereas ZIKV recombinant derived Cu/ex-borne flavivirus-associated proteins generated immunodominant CD8(+) and/or CD4(+) T-cell responses. In silico CD8(+) T-cell epitope ZIKV cross-reactive prediction analyses verified this observation. We propose that by acquiring cytotoxic T-cell epitope-rich regions from Cu/ex-borne flaviviruses, ZIKV evaded DENV-generated T-cell immune cross-protection. Thus, Cu/ex-borne flaviviruses, including West Nile virus and Japanese encephalitis virus, might induce cross-protective T-cell responses against ZIKV. This would explain why explosive ZIKV epidemics occurred in DENV-endemic regions of Micronesia, Polynesia and the Americas where Cu/ex-borne flavivirus outbreaks are infrequent and why ZIKV did not cause major epidemics in Asia where Culex-borne flaviviruses are widespread.
  •  
4.
  • Gaunt, Michael W., et al. (author)
  • Widespread interspecific phylogenetic tree incongruence between mosquito-borne and insect-specific flaviviruses at hotspots originally identified in Zika virus
  • 2022
  • In: Virus Evolution. - : Oxford University Press (OUP). - 2057-1577. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Intraspecies (homologous) phylogenetic incongruence, or 'tree conflict' between different loci within the same genome of mosquito-borne flaviviruses (MBFV), was first identified in dengue virus (DENV) and subsequently in Japanese encephalitis virus (JEV), St Louis encephalitis virus, and Zika virus (ZIKV). Recently, the first evidence of phylogenetic incongruence between interspecific members of the MBFV was reported in ZIKV and its close relative, Spondweni virus. Uniquely, these hybrid proteomes were derived from four incongruent trees involving an Aedes-associated DENV node (1 tree) and three different Culex-associated flavivirus nodes (3 trees). This analysis has now been extended across a wider spectrum of viruses within the MBFV lineage targeting the breakpoints between phylogenetic incongruent loci originally identified in ZIKV. Interspecies phylogenetic incongruence at these breakpoints was identified in 10 of 50 viruses within the MBFV lineage, representing emergent Aedes and Culex-associated viruses including JEV, West Nile virus, yellow fever virus, and insect-specific viruses. Thus, interspecies phylogenetic incongruence is widespread amongst the flaviviruses and is robustly associated with the specific breakpoints that coincide with the interspecific phylogenetic incongruence previously identified, inferring they are 'hotspots'. The incongruence amongst the emergent MBFV group was restricted to viruses within their respective associated epidemiological boundaries. This MBFV group was RY-coded at the third codon position ('wobble codon') to remove transition saturation. The resulting 'wobble codon' trees presented a single topology for the entire genome that lacked any robust evidence of phylogenetic incongruence between loci. Phylogenetic interspecific incongruence was therefore observed for exactly the same loci between amino acid and the RY-coded 'wobble codon' alignments and this incongruence represented either a major part, or the entire genomes. Maximum likelihood codon analysis revealed positive selection for the incongruent lineages. Positive selection could result in the same locus producing two opposing trees. These analyses for the clinically important MBFV suggest that robust interspecific phylogenetic incongruence resulted from amino acid selection. Convergent or parallel evolutions are evolutionary processes that would explain the observation, whilst interspecific recombination is unlikely.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view