SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Graneli Edna) srt2:(2015-2019)"

Sökning: WFRF:(Graneli Edna) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lundgren, Veronica, et al. (författare)
  • Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on prey of, variable nitrogen:phosphorus stoichiometry
  • 2016
  • Ingår i: Harmful Algae. - : Elsevier BV. - 1568-9883 .- 1878-1470. ; 55, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixotrophy is found in almost all classes of phytoplankton in a wide range of aquatic habitats ranging from oligotrophic to eutrophic marine and freshwater systems. Few studies have addressed how the nutritional status of the predator and/or the prey affects mixotrophic metabolism despite the realization that mixotrophy is important ecologically. Laboratory experiments were conducted to examine changes in growth rates and physiological states of the toxic haptophyte Prymnesium parvum when fed Rhodomonas sauna of varying nutritional status. Haemolytic activity of P. parvum and prey mortality of R. sauna were also measured. P. parvum cultures grown to be comparatively low in nitrogen (low-N), phosphorus (low-P) or low in both nutrients (low-NP) were mixed with low-NP, low-N, and low-P R. saline in all possible combinations, i.e., a 3 x 3 factorial design. N deficiency was obtained in the low-N cultures, while true P deficiency may not have been obtained in the low-P cultures. Mortality rates of R. salina (both due to ingestion and/or cell rupture as a function of grazing or toxic effects) were higher when R. sauna cells were low-P, N-rich, regardless of the nutritional state of P. parvum. Mortality rates were, however, directly related to the initial prey:predator cell ratios. On the other hand, growth of the predator was a function of nutritional status and a significant positive correlation was observed between growth rates of P. parvum and cell-specific depletion rates of N, whereas no such relationship was found between P. parvum growth rates and depletion rates of P. In addition, the greatest changes in chlorophyll content and stoichiometric ratios of P. parvum were observed in high N:P conditions. Therefore, P. parvum may show enhanced success under conditions of higher inorganic N:P, which are likely favored in the future due to increases in eutrophication and altered nutrient stoichiometry driven by anthropogenic nutrient loads that are increasingly enriched in N relative to P. (C) 2016 Elsevier B.V. All rights reserved.
  •  
2.
  • Lundgren, Veronica, et al. (författare)
  • Prymnesium parvum invasion success into coastal bays of the Gulf of Mexico : Galveston Bay case study
  • 2015
  • Ingår i: Harmful Algae. - : Elsevier BV. - 1568-9883 .- 1878-1470. ; 43, s. 31-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The toxic haptophyte Prymnesium parvum regularly forms fish-killing blooms in inland brackish water bodies in the south-central USA. Along the Texas coast smaller blooms have occurred in isolated areas. There appears to be an increasing risk that harmful P. parvum blooms will propagate into open coastal waters with implementation of future water plans. These plans will include increased interbasin water transfers from the Brazos River, regularly impacted by P. parvum blooms, to the San Jacinto-Brazos Coastal Basin, which ultimately flows into Galveston Bay (GB). Persisting source populations of P. parvum in inland waters elevates this risk. Thus, there is a need for an increased understanding of how P. parvum might perform in coastal waters, such as those found in GB. Here, two in-field experiments were conducted to investigate the influence of various plankton size-fractions of GB water on inoculated P. parvum during fall and winter, periods when blooms are typically initiating and developing inland. Stationary- and log-growth phase P. parvum were used to represent high and low toxicity initial conditions. Results revealed that P. parvum could grow in GB waters and cause acute mortality to silverside minnows (Menidia beryllina). Depending on season and growth phase, however, P. parvum growth and toxicity varied in different size fractions. During the fall, P. parvum inoculated from stationary-, but not log-growth phase culture, was negatively affected by bacteria-sized particles. During the winter, bacteria and nanoplankton together had a negative effect on P. parvum inoculated from stationary- and, to a lesser degree, log-growth phase cultures. Intermediate- and large-sized grazers when combined with bacteria and nanoplankton had complex relationships with inoculated P. parvum, sometimes stimulating and sometimes suppressing population growth. Toxicity to fish occurred in almost all plankton size fractions. The inclusion of progressively larger sized plankton fractions resulted in trends of decreased toxicity in treatments inoculated with stationary-, but not log-growth phase P. parvum in the fall. In the winter, however, inclusion of larger sized plankton fractions resulted in trends of increased toxicity to fish in treatments inoculated with both stationary- and log-growth phase P. parvum. This study indicates that understanding P. parvum population dynamics in open waters of estuaries and bays will be challenging, as there appears to be complex relationships with naturally occurring components of the plankton. The observations that P. parvum is able to grow to high population density and produce fish-killing levels of toxins underscores the need for advanced risk assessment studies, especially in light of water use plans that will result in P. parvum invasions of greater size. (C) 2015 Elsevier B.V. All rights reserved.
  •  
3.
  • McNamee, Sara E., et al. (författare)
  • Distribution, occurrence and biotoxin composition of the main shellfish toxin producing microalgae within European waters : A comparison of methods of analysis
  • 2016
  • Ingår i: Harmful Algae. - : Elsevier BV. - 1568-9883 .- 1878-1470. ; 55, s. 112-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009-2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (VDU /DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 x 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray. (C) 2016 Elsevier B.V. All rights reserved.
  •  
4.
  • Mitra, Aditee, et al. (författare)
  • Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition : Incorporation of Diverse Mixotrophic Strategies
  • 2016
  • Ingår i: Protist. - : Elsevier BV. - 1434-4610 .- 1618-0941. ; 167:2, s. 106-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic "phytoplankton" and phagotrophic "microzooplankton". However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding, we propose a new functional grouping of planktonic protists in an ecophysiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity, (iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accordingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks. (C) 2016 The Authors. Published by Elsevier GmbH.
  •  
5.
  • Pérez Blanco, Eva, et al. (författare)
  • Cellular nutrient content measured with the nuclear microprobe and toxins produced by Dinophysis norvegica (Dinophyceae) from the Trondheim fjord (Norway)
  • 2015
  • Ingår i: Aquatic Microbial Ecology. - : Inter-Research Science Center. - 0948-3055 .- 1616-1564. ; 75:3, s. 259-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Dinophysis norvegica is a commonly occurring dinoflagellate species and a producer of diarrhetic shellfish poisons. Natural samples were collected from Trondheim fjord, Norway, to analyse nutrient (O, C, N, P) and toxin (dinophysitoxins [DXTs], okadaic acid [OA], pectenotoxins [PTXs]) content in D. norvegica cells. Nutrient and toxin analyses were also carried out on cells grown under nutrient-sufficient and nutrient-deficient conditions to determine how intracellular nutrient and toxin content varied under different nutrient availability conditions. Nutrient analyses were conducted using nuclear microprobe techniques that can accurately analyse single cells, and toxin analyses were carried out using liquid chromatography and mass spectroscopy. The intracellular carbon, nitrogen and phosphorus content in individual cells varied greatly, and intracellular C:N:P ratios showed that the cells were both N- and P-deficient when compared to the Redfield ratio. The ideal N:P ratio in the media for D. norvegica was found to be below the Redfield ratio, but intracellular ratios did not show a clear relationship with those in the media. N:P ratios of D. norvegica were higher than expected, which is likely due to their phagotrophy on zooplankon. The highest toxin values found were traces of PTX2, 24.72 pg PTX2SA cell(-1), 2.19 pg DTX1 cell(-1), and 1.01 pg OA cell(-1). However, we found no clear relationship between the content of intracellular nutrients and toxins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy