SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Greene Joseph E 1944 ) srt2:(2020)"

Search: WFRF:(Greene Joseph E 1944 ) > (2020)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bakhit, Babak, 1983-, et al. (author)
  • Self-organized columnar Zr0.7Ta0.3B1.5 core/shell-nanostructure thin films
  • 2020
  • In: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 401
  • Journal article (peer-reviewed)abstract
    • We recently showed that Zr1−xTaxBy thin films have columnar nanostructure in which column boundaries are B-rich for x < 0.2, while Ta-rich for x ≥ 0.2. Layers with x ≥ 0.2 exhibit higher hardness and, simultaneously, enhanced toughness. Here, we determine the atomic-scale nanostructure of sputter-deposited columnar Zr0.7Ta0.3B1.5 thin films. The columns, 95 ± 17 Å, are core/shell nanostructures in which 80 ± 15-Å cores are crystalline hexagonal-AlB2-structure Zr-rich stoichiometric Zr1−xTaxB2. The shell structure is a narrow dense, disordered region that is Ta-rich and highly B-deficient. The cores are formed under intense ion mixing via preferential Ta segregation, due to the lower formation enthalpy of TaB2 than ZrB2, in response to the chemical driving force to form a stoichiometric compound. The films with unique combination of nanosized crystalline cores and dense metallic-glass-like shells provide excellent mechanical properties.
  •  
2.
  • Thörnberg, Jimmy, et al. (author)
  • Microstructure and materials properties of understoichiometric TiBx thin films grown by HiPIMS
  • 2020
  • In: Surface & Coatings Technology. - : ELSEVIER SCIENCE SA. - 0257-8972 .- 1879-3347. ; 404
  • Journal article (peer-reviewed)abstract
    • TiBx thin films with a B content of 1.43 <= x <= 2.70 were synthesized using high-power impulse magnetron sputtering (HiPIMS) and direct-current magnetron sputtering (DCMS). HiPIMS allows compositions ranging from understoichiometric to overstoichiometric dense TiBx thin films with a B/Ti ratio between 1.43 and 2.06, while DCMS yields overstoichiometric TiBx films with a B/Ti ratio ranging from 2.20 to 2.70. Excess B in overstoichiometric TiBx thin films from DCMS results in a hardness up to 37.7 +/- 0.8 GPa, attributed to the formation of an amorphous B-rich tissue phase interlacing stoichiometric TiB2 columnar structures. We furthermore show that understoichiometric TiB1.43 thin films synthesized by HiPIMS, where the deficiency of B is found to be accommodated by Ti-rich planar defects, exhibit a superior hardness of 43.9 +/- 0.9 GPa. The apparent fracture toughness and thermal conductivity of understoichiometric TiB1.43 HiPIMS films are 4.2 +/- 0.1 MPa root m and 2.46 +/- 0.22 W/(m.K), respectively, as compared to corresponding values for overstoichiometric TiB2.70 DCMS film samples of 3.1 +/- 0.1 MPa root m and 4.52 +/- 0.45 W/(mK). This work increases the fundamental understanding of understoichiometric TiBx thin films and their materials properties, and shows that understoichiometric films have properties matching or going beyond those with excess B.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view