SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grillberger Karin) "

Sökning: WFRF:(Grillberger Karin)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Loser, Dominik, et al. (författare)
  • Acute effects of the imidacloprid metabolite desnitro-imidacloprid on human nACh receptors relevant for neuronal signaling
  • 2021
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 95:12, s. 3695-3716
  • Tidskriftsartikel (refereegranskat)abstract
    • Several neonicotinoids have recently been shown to activate the nicotinic acetylcholine receptor (nAChR) on human neurons. Moreover, imidacloprid (IMI) and other members of this pesticide family form a set of diverse metabolites within crops. Among these, desnitro-imidacloprid (DN-IMI) is of special toxicological interest, as there is evidence (i) for human dietary exposure to this metabolite, (ii) and that DN-IMI is a strong trigger of mammalian nicotinic responses. We set out here to quantify responses of human nAChRs to DN-IMI and an alternative metabolite, IMI-olefin. To evaluate toxicological hazards, these data were then compared to those of IMI and nicotine. Ca2+-imaging experiments on human neurons showed that DN-IMI exhibits an agonistic effect on nAChRs at sub-micromolar concentrations (equipotent with nicotine) while IMI-olefin activated the receptors less potently (in a similar range as IMI). Direct experimental data on the interaction with defined receptor subtypes were obtained by heterologous expression of various human nAChR subtypes in Xenopus laevis oocytes and measurement of the transmembrane currents evoked by exposure to putative ligands. DN-IMI acted on the physiologically important human nAChR subtypes alpha 7, alpha 3 beta 4, and alpha 4 beta 2 (high-sensitivity variant) with similar potency as nicotine. IMI and IMI-olefin were confirmed as nAChR agonists, although with 2-3 orders of magnitude lower potency. Molecular docking studies, using receptor models for the alpha 7 and alpha 4 beta 2 nAChR subtypes supported an activity of DN-IMI similar to that of nicotine. In summary, these data suggest that DN-IMI functionally affects human neurons similar to the well-established neurotoxicant nicotine by triggering alpha 7 and several non-alpha 7 nAChRs.
  •  
2.
  • Loser, Dominik, et al. (författare)
  • Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons
  • 2021
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 95, s. 2081-2107
  • Tidskriftsartikel (refereegranskat)abstract
    • Neonicotinoid pesticides, originally developed to target the insect nervous system, have been reported to interact with human receptors and to activate rodent neurons. Therefore, we evaluated in how far these compounds may trigger signaling in human neurons, and thus, affect the human adult or developing nervous system. We used SH-SY5Y neuroblastoma cells as established model of nicotinic acetylcholine receptor (nAChR) signaling. In parallel, we profiled dopaminergic neurons, generated from LUHMES neuronal precursor cells, as novel system to study nAChR activation in human post-mitotic neurons. Changes of the free intracellular Ca2+ concentration ([Ca2+](i)) were used as readout, and key findings were confirmed by patch clamp recordings. Nicotine triggered typical neuronal signaling responses that were blocked by antagonists, such as tubocurarine and mecamylamine. Pharmacological approaches suggested a functional expression of alpha 7 and non-alpha 7 nAChRs on LUHMES cells. In this novel test system, the neonicotinoids acetamiprid, imidacloprid, clothianidin and thiacloprid, but not thiamethoxam and dinotefuran, triggered [Ca2+](i) signaling at 10-100 mu M. Strong synergy of the active neonicotinoids (at low micromolar concentrations) with the alpha 7 nAChR-positive allosteric modulator PNU-120596 was observed in LUHMES and SH-SY5Y cells, and specific antagonists fully inhibited such signaling. To provide a third line of evidence for neonicotinoid signaling via nAChR, we studied cross-desensitization: pretreatment of LUHMES and SH-SY5Y cells with active neonicotinoids (at 1-10 mu M) blunted the signaling response of nicotine. The pesticides (at 3-30 mu M) also blunted the response to the non-alpha 7 agonist ABT 594 in LUHMES cells. These data show that human neuronal cells are functionally affected by low micromolar concentrations of several neonicotinoids. An effect of such signals on nervous system development is a toxicological concern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy