SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gryaznevich M.) srt2:(2005-2009)"

Sökning: WFRF:(Gryaznevich M.) > (2005-2009)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meyer, H., et al. (författare)
  • Overview of physics results from MAST
  • 2009
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:10, s. 104017-
  • Tidskriftsartikel (refereegranskat)abstract
    • Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks (STs). Using the increased heating capabilities P-NBI <= 3.8 MW H-mode at I-P = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I-P and more strongly with B-t than in the ITER IPB98(y, 2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original designed total throughput capacity. The anomalous momentum diffusion, chi(phi), is linked to the ion diffusion, chi(i), with a Prandtl number close to P-phi approximate to chi(phi)/chi(i) approximate to 1, although chi(i) approaches neoclassical values. New high spatial resolution measurements of the edge radial electric field, E-r, show that the position of steepest gradients in electron pressure and E-r (i.e. shearing rate) are coincident, but their magnitudes are not linked. The T-e pedestal width on MAST scales with root beta(ped)(pol) rather than rho(pol). The edge localized mode (ELM) frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of four external coils (n = 1, 2). A new internal 12 coil set (n <= 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfven eigenmodes. Fast particle instabilities also affect the off-axis NBI current drive, leading to fast ion diffusion of the order of 0.5 m(2) s(-1) and a reduction in the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a ST generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST.
  •  
2.
  • Lloyd, B., et al. (författare)
  • Overview of physics results from MAST
  • 2007
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 47:10, s. S658-S667
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial advances have been made on the Mega AmpÚre Spherical Tokamak (MAST). The parameter range of the MAST confinement database has been extended and it now also includes pellet-fuelled discharges. Good pellet retention has been observed in H-mode discharges without triggering an ELM or an H/L transition during peripheral ablation of low speed pellets. Co-ordinated studies on MAST and DIII-D demonstrate a strong link between the aspect ratio and the beta scaling of H-mode energy confinement, consistent with that obtained when MAST data were merged with a subset of the ITPA database. Electron and ion ITBs are readily formed and their evolution has been investigated. Electron and ion thermal diffusivities have been reduced to values close to the ion neoclassical level. Error field correction coils have been used to determine the locked mode threshold scaling which is comparable to that in conventional aspect ratio tokamaks. The impact of plasma rotation on sawteeth has been investigated and the results have been well-modelled using the MISHKA-F code. Alfvén cascades have been observed in discharges with reversed magnetic shear. Measurements during off-axis NBCD and heating are consistent with classical fast ion modelling and indicate efficient heating and significant driven current. Central electron Bernstein wave heating has been observed via the O-X-B mode conversion process in special magnetically compressed plasmas. Plasmas with low pedestal collisionality have been established and further insight has been gained into the characteristics of filamentary structures at the plasma edge. Complex behaviour of the divertor power loading during plasma disruptions has been revealed by high resolution infra-red measurements.
  •  
3.
  • Liang, Y., et al. (författare)
  • Active control of type-I edge localized modes on JET
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 49:12B, s. B581-B589
  • Tidskriftsartikel (refereegranskat)abstract
    • The operational domain for active control of type-I edge localized modes (ELMs) with an n = 1 external magnetic perturbation field induced by the ex-vessel error field correction coils on JET has been developed towards more ITER-relevant regimes with high plasma triangularity, up to 0.45, high normalized beta, up to 3.0, plasma current up to 2.0 MA and q(95) varied between 3.0 and 4.8. The results of ELM mitigation in high triangularity plasmas show that the frequency of type-I ELMs increased by a factor of 4 during the application of the n = 1 fields, while the energy loss per ELM, Delta W/W, decreased from 6% to below the noise level of the diamagnetic measurement (<2%). No reduction of confinement quality (H98Y) during the ELM mitigation phase has been observed. The minimum n = 1 perturbation field amplitude above which the ELMs were mitigated increased with a lower q(95) but always remained below the n = 1 locked mode threshold. The first results of ELM mitigation with n = 2 magnetic perturbations on JET demonstrate that the frequency of ELMs increased from 10 to 35 Hz and a wide operational window of q95 from 4.5 to 3.1 has been found.
  •  
4.
  • Liang, Y., et al. (författare)
  • Active control of type-I edge-localized modes with n=1 perturbation fields in the JET tokamak
  • 2007
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 98:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Type-I edge-localized modes (ELMs) have been mitigated at the JET tokamak using a static external n=1 perturbation field generated by four error field correction coils located far from the plasma. During the application of the n=1 field the ELM frequency increased by a factor of 4 and the amplitude of the D-alpha signal decreased. The energy loss per ELM normalized to the total stored energy, Delta W/W, dropped to values below 2%. Transport analyses shows no or only a moderate (up to 20%) degradation of energy confinement time during the ELM mitigation phase.
  •  
5.
  • Litaudon, X., et al. (författare)
  • Development of steady-state scenarios compatible with ITER-like wall conditions
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 49:12B, s. B529-B550
  • Tidskriftsartikel (refereegranskat)abstract
    • A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q(95) similar to 5 and high triangularity, 3 (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching beta(N) similar to 2 at B(o) similar to 3.1 T. Operating at higher 6 has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At reduced toroidal magnetic field strength, high beta(N) regimes have been achieved and q-profile optimization investigated for use in steady-state scenarios. Values of beta(N) above the 'no-wall magnetohydrodynamic limit' (beta(N) similar to 3.0) have been sustained for a resistive current diffusion time in high-delta configurations (at 1.2 MA/1.8 T). In this scenario, ELM activity has been mitigated by applying magnetic perturbations using error field correction coils to provide ergodization of the magnetic field at the plasma edge. In a highly shaped, quasi-double null X-point configuration, ITBs have been generated on the ion heat transport channel and combined with 'grassy' ELMs with similar to 30 MW of applied heating power (at 1.2 MA/2.7 T, q(95) similar to 7). Advanced algorithms and system identification procedures have been developed with a view to developing simultaneously temperature and q-profile control in real-time. These techniques have so far been applied to the control of the q-profile evolution in JET AT scenarios.
  •  
6.
  • Liu, Yueqiang, 1971, et al. (författare)
  • Modeling of resistive wall mode and its control in experiments and ITER
  • 2006
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Active control of the resistive wall mode (RWM) for DIII-D [Luxon and Davis, Fusion Technol. 8, 441 (1985)] plasmas is studied using the MARS-F code [Y. Q. Liu, Phys. Plasmas 7, 3681 (2000)]. Control optimization shows that the mode can be stabilized up to the ideal wall beta limit, using the internal control coils (I-coils) and poloidal sensors located at the outboard midplane, in combination with an ideal amplifier. With the present DIII-D power supply model, the stabilization is achieved up to 70% of the range between no-wall and ideal-wall limits. Reasonably good quantitative agreement is achieved between MARS-F simulations and experiments on DIII-D and JET (Joint European Torus) [P. H. Rebut, Nucl. Fusion 25, 1011 (1985)] on critical rotation for the mode stabilization. Dynamics of rotationally stabilized plasmas is well described by a single mode approximation; whilst a strongly unstable plasma requires a multiple mode description. For ITER [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)], the MARS-F simulations show the plasma rotation may not provide a robust mechanism for the RWM stabilization in the advanced scenario. With the assumption of ideal amplifiers, and using optimally tuned controllers and sensor signals, the present feedback coil design in ITER allows stabilization of the n=1 RWM for plasma pressures up to 80% of the range between the no-wall and ideal-wall limits.
  •  
7.
  • Challis, C. D., et al. (författare)
  • High βN JET H-modes for steady-state application
  • 2007
  • Ingår i: 34th EPS Conference on Plasma Physics 2007, EPS 2007 - Europhysics Conference Abstracts. - : European Physical Society. - 9781622763344 ; , s. 2118-2121
  • Konferensbidrag (refereegranskat)
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy