SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gude A.) srt2:(2015-2019)"

Sökning: WFRF:(Gude A.) > (2015-2019)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
5.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
6.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
7.
  • Labit, B., et al. (författare)
  • Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:8
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Institute of Physics Publishing. All rights reserved. Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.
  •  
8.
  •  
9.
  •  
10.
  • Andreassen, A. K., et al. (författare)
  • Everolimus Initiation With Early Calcineurin Inhibitor Withdrawal in De Novo Heart Transplant Recipients: Three-Year Results From the Randomized SCHEDULE Study
  • 2016
  • Ingår i: American Journal of Transplantation. - : WILEY-BLACKWELL. - 1600-6135 .- 1600-6143. ; 16:4, s. 1238-1247
  • Tidskriftsartikel (refereegranskat)abstract
    • In a randomized, open-label trial, de novo heart transplant recipients were randomized to everolimus (3-6ng/mL) with reduced-exposure calcineurin inhibitor (CNI; cyclosporine) to weeks 7-11 after transplant, followed by increased everolimus exposure (target 6-10ng/mL) with cyclosporine withdrawal or standard-exposure cyclosporine. All patients received mycophenolate mofetil and corticosteroids. A total of 110 of 115 patients completed the 12-month study, and 102 attended a follow-up visit at month 36. Mean measured GFR (mGFR) at month 36 was 77.4mL/min (standard deviation [SD] 20.2mL/min) versus 59.2mL/min (SD 17.4mL/min) in the everolimus and CNI groups, respectively, a difference of 18.3mL/min (95% CI 11.1-25.6mL/min; p < 0.001) in the intention to treat population. Multivariate analysis showed treatment to be an independent determinant of mGFR at month 36. Coronary intravascular ultrasound at 36 months revealed significantly reduced progression of allograft vasculopathy in the everolimus group compared with the CNI group. Biopsy-proven acute rejection grade 2R occurred in 10.2% and 5.9% of everolimus- and CNI-treated patients, respectively, during months 12-36. Serious adverse events occurred in 37.3% and 19.6% of everolimus- and CNI-treated patients, respectively (p=0.078). These results suggest that early CNI withdrawal after heart transplantation supported by everolimus, mycophenolic acid and steroids with lymphocyte-depleting induction is safe at intermediate follow-up. This regimen, used selectively, may offer adequate immunosuppressive potency with a sustained renal advantage. A follow-up study of the SCHEDULE trial, which randomized de novo heart transplant recipients to everolimus with cyclosporine discontinuation or to standard-exposure cyclosporine, shows that measured glomerular filtration rate remains significantly higher in the everolimus group at three years posttransplant, with significantly reduced progression of allograft vasculopathy compared to cyclosporine therapy.
  •  
11.
  • Arora, S., et al. (författare)
  • The Effect of Everolimus Initiation and Calcineurin Inhibitor Elimination on Cardiac Allograft Vasculopathy in De Novo Recipients: One-Year Results of a Scandinavian Randomized Trial
  • 2015
  • Ingår i: American Journal of Transplantation. - : Elsevier BV. - 1600-6135. ; 15:7, s. 1967-1975
  • Tidskriftsartikel (refereegranskat)abstract
    • Early initiation of everolimus with calcineurin inhibitor therapy has been shown to reduce the progression of cardiac allograft vasculopathy (CAV) in de novo heart transplant recipients. The effect of de novo everolimus therapy and early total elimination of calcineurin inhibitor therapy has, however, not been investigated and is relevant given the morbidity and lack of efficacy of current protocols in preventing CAV. This 12-month multicenter Scandinavian trial randomized 115 de novo heart transplant recipients to everolimus with complete calcineurin inhibitor elimination 7-11 weeks after HTx or standard cyclosporine immunosuppression. Ninety-five (83%) patients had matched intravascular ultrasound examinations at baseline and 12 months. Mean (SD) recipient age was 49.9 +/- 13.1 years. The everolimus group (n=47) demonstrated significantly reduced CAV progression as compared to the calcineurin inhibitor group (n=48) (Maximal Intimal Thickness 0.03 +/- 0.06 and 0.08 +/- 0.12mm, Percent Atheroma Volume 1.3 +/- 2.3 and 4.2 +/- 5.0%, Total Atheroma Volume 1.1 +/- 19.2mm(3) and 13.8 +/- 28.0mm(3) [all p-values0.01]). Everolimus patients also had a significantly greater decline in levels of soluble tumor necrosis factor receptor-1 as compared to the calcineurin inhibitor group (p=0.02). These preliminary results suggest that an everolimus-based CNI-free can potentially be considered in suitable de novo HTx recipients.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy