SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gueorguiev Gueorgui Kostov) srt2:(2020-2024)"

Sökning: WFRF:(Gueorguiev Gueorgui Kostov) > (2020-2024)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Högberg, Hans, et al. (författare)
  • Reactive sputtering of CSx thin solid films using CS2 as precursor
  • 2020
  • Ingår i: Vacuum. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0042-207X .- 1879-2715. ; 182
  • Tidskriftsartikel (refereegranskat)abstract
    • We deposit CSx thin solid films by reactive direct current magnetron sputtering of a C target in an argon plasma, using carbon disulfide (CS2) as a precursor to film growth. We investigate the influence of the partial pressure of the CS2 vapor introduced into the plasma on the composition, the chemical bonding structure, the structural, and the mechanical properties as determined by x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), and nanoindentation for films deposited at 150 and 300 degrees C. The Raman and the XPS results indicate that S atoms are incorporated in mostly sp(2) bonded C network. These results agree with previous ab-initio theoretical findings obtained by modeling of the CSx compound by the Synthetic Growth Concept. The microstructure of the films as well as the results of their Raman characterization and the nano mechanical testing results all point out that with the increasing S content some spa bonding is admixed in the predominantly sp(2) bonded CSx network, leading to typical amorphous structure with short and interlocked graphene-like planes for S contents between 2% and 8%. We conclude that CSx thin solid films deposited by using CS2 as a precursor would be CSx films deposited at low temperature of similar to 150 degrees C and with an S content in the region of 6 at.% may be interesting candidates for applications as hard/elastic protective coatings.
  •  
2.
  • Kakanakova-Gueorguieva, Anelia, et al. (författare)
  • MOCVD of AlN on epitaxial graphene at extreme temperatures
  • 2021
  • Ingår i: CrystEngComm. - : ROYAL SOC CHEMISTRY. - 1466-8033. ; 23:2, s. 385-390
  • Tidskriftsartikel (refereegranskat)abstract
    • The initial stages of metal organic chemical vapor deposition (MOCVD) of AlN on epitaxial graphene at temperatures in excess of 1200 degrees C have been rationalized. The use of epitaxial graphene, in conjunction with high deposition temperatures, can deliver on the realization of nanometer thin AlN whose material quality is characterized by the appearance of luminescent centers with narrow spectral emission at room temperature. It has been elaborated, based on our previous comprehensive ab initio molecular dynamics simulations, that the impact of graphene on AlN growth consists in the way it promotes dissociation of the trimethylaluminum, (CH3)(3)Al, precursor with subsequent formation of Al adatoms during the initial stages of the deposition process. The high deposition temperatures ensure adequate surface diffusion of the Al adatoms which is an essential factor in material quality enhancement. The role of graphene in intervening with the dissociation of another precursor, trimethylgallium, (CH3)(3)Ga, has accordingly been speculated by presenting a case of propagation of ultrathin GaN of semiconductor quality. A lower deposition temperature of 1100 degrees C in this case has better preserved the structural integrity of epitaxial graphene. Breakage and decomposition of the graphene layers has been deduced in the case of AlN deposition at temperatures in excess of 1200 degrees C.
  •  
3.
  • Kakanakova-Gueorguieva, Anelia, et al. (författare)
  • Nanoscale phenomena ruling deposition and intercalation of AlN at the graphene/SiC interface
  • 2020
  • Ingår i: Nanoscale. - : ROYAL SOC CHEMISTRY. - 2040-3364 .- 2040-3372. ; 12:37, s. 19470-19476
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility for kinetic stabilization of prospective 2D AlN was explored by rationalizing metal organic chemical vapor deposition (MOCVD) processes of AlN on epitaxial graphene. From the wide range of temperatures which can be covered in the same MOCVD reactor, the deposition was performed at the selected temperatures of 700, 900, and 1240 degrees C. The characterization of the structures by atomic force microscopy, electron microscopy and Raman spectroscopy revealed a broad range of surface nucleation and intercalation phenomena. These phenomena included the abundant formation of nucleation sites on graphene, the fragmentation of the graphene layers which accelerated with the deposition temperature, the delivery of excess precursor-derived carbon adatoms to the surface, as well as intercalation of sub-layers of aluminum atoms at the graphene/SiC interface. The conceptual understanding of these nanoscale phenomena was supported by our previous comprehensiveab initiomolecular dynamics (AIMD) simulations of the surface reaction of trimethylaluminum, (CH3)(3)Al, precursor with graphene. A case of applying trimethylindium, (CH3)(3)In, precursor to epitaxial graphene was considered in a comparative way.
  •  
4.
  • Alves Machado Filho, Manoel, et al. (författare)
  • Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations
  • 2023
  • Ingår i: ACS Nanoscience Au. - : American Chemical Society (ACS). - 2694-2496. ; 3:1, s. 84-93
  • Tidskriftsartikel (refereegranskat)abstract
    • By addressing precursor prevalence and energetics using the DFT-based synthetic growth concept (SGC), the formation mechanism of self-induced InAlN core–shell nanorods (NRs) synthesized by reactive magnetron sputter epitaxy (MSE) is explored. The characteristics of In- and Al-containing precursor species are evaluated considering the thermal conditions at a typical NR growth temperature of around 700 °C. The cohesive and dissociation energies of In-containing precursors are consistently lower than those of their Al-containing counterparts, indicating that In-containing precursors are more weakly bonded and more prone to dissociation. Therefore, In-containing species are expected to exhibit lower abundance in the NR growth environment. At increased growth temperatures, the depletion of In-based precursors is even more pronounced. A distinctive imbalance in the incorporation of Al- and In-containing precursor species (namely, AlN/AlN+, AlN2/AlN2+, Al2N2/Al2N2+, and Al2/Al2+ vs InN/InN+, InN2/InN2+, In2N2/In2N2+, and In2/In2+) is found at the growing edge of the NR side surfaces, which correlates well with the experimentally obtained core–shell structure as well as with the distinctive In-rich core and vice versa for the Al-rich shell. The performed modeling indicates that the formation of the core–shell structure is substantially driven by the precursors’ abundance and their preferential bonding onto the growing edge of the nanoclusters/islands initiated by phase separation from the beginning of the NR growth. The cohesive energies and the band gaps of the NRs show decreasing trends with an increment in the In concentration of the NRs’ core and with an increment in the overall thickness (diameter) of the NRs. These results reveal the energy and electronic reasons behind the limited growth (up to ∼25% of In atoms of all metal atoms, i.e., InxAl1–xN, x ∼ 0.25) in the NR core and may be qualitatively perceived as a limiting factor for the thickness of the grown NRs (typically <50 nm).
  •  
5.
  • Bairagi, Samiran, et al. (författare)
  • Formation of quaternary Zn(AlxGa1−x)2O4 epilayers driven by thermally induced interdiffusion between spinel ZnGa2O4 epilayer and Al2O3 substrate
  • 2023
  • Ingår i: Materials Today Advances. - : Elsevier. - 2590-0498. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc aluminogallate, Zn(AlxGa1−x)2O4 (ZAGO), a single-phase spinel structure, offers considerable potential for high-performance electronic devices due to its expansive compositional miscibility range between aluminum (Al) and gallium (Ga). Direct growth of high-quality ZAGO epilayers however remains problematic due to the high volatility of zinc (Zn). This work highlights a novel synthesis process for high-quality epitaxial quaternary ZAGO thin films on sapphire substrates, achieved through thermal annealing of a ZnGa2O4 (ZGO) epilayer on sapphire in an ambient air setting. In-situ annealing x-ray diffraction measurements show that the incorporation of Al in the ZGO epilayer commenced at 850 °C. The Al content (x) in ZAGO epilayer gradually increased up to around 0.45 as the annealing temperature was raised to 1100 °C, which was confirmed by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy. X-ray rocking curve measurement revealed a small full width at half maximum value of 0.72 °, indicating the crystal quality preservation of the ZAGO epilayer with a high Al content. However, an epitaxial intermediate �–(AlxGa1−x)2O3 layer (� - AGO) was formed between the ZAGO and sapphire substrate. This is believed to be a consequence of the interdiffusion of Al and Ga between the ZGO thin film and sapphire substrate. Using density functional theory, the substitution cost of Ga in sapphire was determined to be about 0.5 eV lower than substitution cost of Al in ZGO. Motivated by this energetically favorable substitution, a formation mechanism of the ZAGO and AGO layers was proposed. Spectroscopic ellipsometry studies revealed an increase in total thickness of the film from 105.07 nm (ZGO) to 147.97 nm (ZAGO/AGO) after annealing to 1100 °C, which were corroborated using TEM. Furthermore, an observed increase in the direct (indirect) optical bandgap from 5.06 eV (4.7 eV) to 5.72 eV (5.45 eV) with an increasing Al content in the ZAGO layer further underpins the formation of a quaternary ZAGO alloy with a tunable composition.
  •  
6.
  • Chang, Jui-Che, et al. (författare)
  • Domain epitaxial growth of Ta3N5 film on c-plane sapphire substrate
  • 2022
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 443
  • Tidskriftsartikel (refereegranskat)abstract
    • Tritantalum pentanitride (Ta3N5) semiconductor is a promising material for photoelectrolysis of water with high efficiency. Ta3N5 is a metastable phase in the complex system of TaN binary compounds. Growing stabilized single-crystal Ta3N5 films is correspondingly challenging. Here, we demonstrate the growth of a nearly single-crystal Ta3N5 film with epitaxial domains on c-plane sapphire substrate, Al2O3(0001), by magnetron sputter epitaxy. Introduction of a small amount ~2% of O2 into the reactive sputtering gas mixed with N2 and Ar facilitates the formation of a Ta3N5 phase in the film dominated by metallic TaN. In addition, we indicate that a single-phase polycrystalline Ta3N5 film can be obtained with the assistance of a Ta2O5 seed layer. With controlling thickness of the seed layer smaller than 10 nm and annealing at 1000 °C, a crystalline β phase Ta2O5 was formed, which promotes the domain epitaxial growth of Ta3N5 films on Al2O3(0001). The mechanism behind the stabilization of the orthorhombic Ta3N5 structure resides in its stacking with the ultrathin seed layer of orthorhombic β-Ta2O5, which is energetically beneficial and reduces the lattice mismatch with the substrate.
  •  
7.
  • de Almeida Jr, Edward Ferraz, et al. (författare)
  • On Decorating a Honeycomb AlN Monolayer with Hydrogen and Fluorine Atoms: Ab Initio and Experimental Aspects
  • 2024
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Mono- and few-layer hexagonal AlN (h-AlN) has emerged as an alternative "beyond graphene" and "beyond h-BN" 2D material, especially in the context of its verification in ultra-high vacuum Scanning Tunneling Microscopy and Molecular-beam Epitaxy (MBE) experiments. However, graphitic-like AlN has only been recently obtained using a scalable and semiconductor-technology-related synthesis techniques, such as metal-organic chemical vapor deposition (MOCVD), which involves a hydrogen-rich environment. Motivated by these recent experimental findings, in the present work, we carried out ab initio calculations to investigate the hydrogenation of h-AlN monolayers in a variety of functionalization configurations. We also investigated the fluorination of h-AlN monolayers in different decoration configurations. We find that a remarkable span of bandgap variation in h-AlN, from metallic properties to nar-row-bandgap semiconductor, and to wide-bandgap semiconductor can be achieved by its hy-drogenation and fluorination. Exciting application prospects may also arise from the findings that H and F decoration of h-AlN can render some such configurations magnetic. We complemented this modelling picture by disclosing a viable experimental strategy for the fluorination of h-AlN.
  •  
8.
  • de Oliveira, Maria I. A., et al. (författare)
  • Optical properties of organosilicon compounds containing sigma-electron delocalization by quasiparticle self-consistent GW calculations
  • 2021
  • Ingår i: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy. - : Pergamon Press. - 1386-1425 .- 1873-3557. ; 245
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate theoretically the electronic and optical absorption properties of two sub-classes of oligosilanes: (i) Si(CH3)(4), Si-4(CH3)(8), and Si-8(CH3)(8) that contain Si dot, ring and cage, respectively, and exhibit typical Si-C and Si-Si bonds; and (ii) persilastaffanes Si7H6(CH3)(6) and Si12H6(CH3)(12), which contain extended delocalized s-electrons in Si-Si bonds over three-dimensional Si frameworks. Our modeling is performed within the GW approach up to the partially self-consistent GW(0) approximation, which is more adequate for reliably predicting the optical band gaps of materials. We examine how the optical properties of these organosilicon compounds depend on their size, geometric features, and Si/C composition. Our results indicate that the present methodology offers a viable way of describing the optical excitations of tailored functional Si-C-based clusters and molecular optical tags with potential use as efficient light absorbers/emitters in molecular optical devices. (C) 2020 The Author(s). Published by Elsevier B.V.
  •  
9.
  • dos Santos, Renato Batista, et al. (författare)
  • Exploring 2D structures of indium oxide of different stoichiometry
  • 2021
  • Ingår i: CrystEngComm. - : Royal Society of Chemistry. - 1466-8033. ; 23:38, s. 6661-6667
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of specific and outstanding 2D-structure-related material performance has motivated a search for 2D atomic structures that can even be described as non-van-der-Waals-type materials. This has been exemplified with materials from group IV and group III-V which naturally crystallize in diamond, zincblende or wurtzite crystal structures. Here, we give insight into various atomic structures of indium oxide at the 2D limit featuring different stoichiometry, including 2D InO and 2D In2O3. We find that 2D InO with an InSe-type structure and its characteristic In-In distances compare closely with available first-time experimental results. An as yet unexplored 2D structure of indium oxide is found to be a planar hexagonal monolayer of h-In2O3.
  •  
10.
  • Kakanakova-Gueorguieva, Anelia, et al. (författare)
  • Material proposal for 2D indium oxide
  • 2021
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 548
  • Tidskriftsartikel (refereegranskat)abstract
    • Realization of semiconductor materials at the two-dimensional (2D) limit can elicit exceptional and diversified performance exercising transformative influence on modern technology. We report experimental evidence for the formation of conceptually new 2D indium oxide (InO) and its material characteristics. The formation of 2D InO was harvested through targeted intercalation of indium (In) atoms and deposition kinetics at graphene/SiC interface using a robust metal organic chemical vapor deposition (MOCVD) process. A distinct structural configuration of two sub-layers of In atoms in "atop" positions was imaged by scanning transmission electron microscopy (STEM). The bonding of oxygen atoms to indium atoms was indicated using electron energy loss spectroscopy (EELS). A wide bandgap energy measuring a value of 4.1 eV was estimated by conductive atomic force microscopy measurements (C-AFM) for the 2D InO.
  •  
11.
  • Lundgren, Christoffer, et al. (författare)
  • A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics
  • 2022
  • Ingår i: Nanotechnology. - : IOP Publishing Ltd. - 0957-4484 .- 1361-6528. ; 33:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification and synthesis of 2D topological insulators is particularly elusive. According to previous ab initio predictions 2D InBi (Indium Bismide) is a material exhibiting topological properties which are combined with a band gap suitable for practical applications. We employ ab initio molecular dynamics (AIMD) simulations to assess the thermal stability as well as the mechanical properties such as elastic modulus and stress-strain curves of 2D InBi. The obtained new knowledge adds further characteristics appealing to the feasibility of its synthesis and its potential applications. We find that pristine 2D InBi, H-InBi (hydrogenated 2D InBi) as well as 2D InBi heterostructures with graphene are all stable well above room temperature, being the calculated thermal stability for pristine 2D InBi 850 K and for H-InBi in the range above 500 K. The heterostructures of 2D InBi with graphene exhibit thermal stability exceeding 1000 K. In terms of mechanical properties, pristine 2D InBi exhibits similarities with another 2D material, stanene. The fracture stress for 2D InBi is estimated to be similar to 3.3 GPa (similar to 3.6 GPa for stanene) while elastic modulus of 2D InBi reads similar to 34 GPa (to compare with similar to 23 GPa for stanene). Overall, the thermal stability, elastic, and fracture resistant properties of 2D InBi and its heterostructures with graphene appear as high enough to motivate future attempts directed to its synthesis and characterization.
  •  
12.
  • Machado Filho, Manoel Alves, et al. (författare)
  • Density Functional Theory-Fed Phase Field Model for Semiconductor Nanostructures: The Case of Self-Induced Core-Shell InAlN Nanorods
  • 2024
  • Ingår i: Crystal Growth & Design. - : AMER CHEMICAL SOC. - 1528-7483 .- 1528-7505.
  • Tidskriftsartikel (refereegranskat)abstract
    • The self-induced formation of core-shell InAlN nanorods (NRs) is addressed at the mesoscopic scale by density functional theory (DFT)-resulting parameters to develop phase field modeling (PFM). Accounting for the structural, bonding, and electronic features of immiscible semiconductor systems at the nanometer scale, we advance DFT-based procedures for computation of the parameters necessary for PFM simulation runs, namely, interfacial energies and diffusion coefficients. The developed DFT procedures conform to experimental self-induced InAlN NRs' concerning phase-separation, core/shell interface, morphology, and composition. Finally, we infer the prospects for the transferability of the coupled DFT-PFM simulation approach to a wider range of nanostructured semiconductor materials.
  •  
13.
  • Pela, Ronaldo Rodrigues, et al. (författare)
  • Electronic and optical properties of core–shell InAlN nanorods: a comparative study via LDA, LDA-1/2, mBJ, HSE06, G0W0 and BSE methods
  • 2024
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : ROYAL SOC CHEMISTRY. - 1463-9076 .- 1463-9084.
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, self-induced InAlN core-shell nanorods enjoy an advanced stage of accumulation of experimental data from their growth and characterization as well as a comprehensive understanding of their formation mechanism by the ab initio modeling based on Synthetic Growth Concept. However, their electronic and optical properties, on which most of their foreseen applications are expected to depend, have not been investigated comprehensively. GW and the Bethe-Salpeter equation (BSE) are regarded as the state-of-the-art ab initio methodologies to study these properties. However, one of the major drawbacks of these methods is the computational cost, much higher than density-functional theory (DFT). Therefore, in many applications, it is highly desirable to answer the question of how well approaches based on DFT, such as e.g. the local density approximation (LDA), LDA-1/2, the modified Becke-Johnson (mBJ) and the Heyd-Scuseria-Ernzerhof (HSE06) functionals, can be employed to calculate electronic and optical properties with reasonable accuracy. In the present paper, we address this question, investigating how effective the DFT-based methodologies LDA, LDA-1/2, mBJ and HSE06 can be used as approximate tools in studies of the electronic and optical properties of scaled down models of core-shell InAlN nanorods, thus, avoiding GW and BSE calculations.
  •  
14.
  •  
15.
  • Sangiovanni, Davide, et al. (författare)
  • Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 25:1, s. 829-837
  • Tidskriftsartikel (refereegranskat)abstract
    • Conceptual 2D group III nitrides and oxides (e.g., 2D InN and 2D InO) in heterostructures with graphene have been realized by metal-organic chemical vapor deposition (MOCVD). MOCVD is expected to bring forth the same impact in the advancement of 2D semiconductor materials as in the fabrication of established semiconductor materials and device heterostructures. MOCVD employs metal-organic precursors such as trimethyl-indium, -gallium, and -aluminum, with (strong) metal-carbon bonds. Mechanisms that regulate MOCVD processes at the atomic scale are largely unknown. Here, we employ density-functional molecular dynamics - accounting for van der Waals interactions - to identify the reaction pathways responsible for dissociation of the trimethylindium (TMIn) precursor in the gas phase as well as on top-layer and zero-layer graphene. The simulations reveal how collisions with hydrogen molecules, intramolecular or surface-mediated proton transfer, and direct TMIn/graphene reactions assist TMIn transformations, which ultimately enables delivery of In monomers or InH and CH3In admolecules, on graphene. This work provides knowledge for understanding the nucleation and intercalation mechanisms at the atomic scale and for carrying out epitaxial growth of 2D materials and graphene heterostructures.
  •  
16.
  • Sfuncia, Gianfranco, et al. (författare)
  • 2D graphitic-like gallium nitride and other structural selectivity in confinement at the graphene/SiC interface
  • 2023
  • Ingår i: CrystEngComm. - : ROYAL SOC CHEMISTRY. - 1466-8033. ; 25:41, s. 5810-5817
  • Tidskriftsartikel (refereegranskat)abstract
    • Beyond the predictions routinely achievable by first-principles calculations and using metal-organic chemical vapor deposition (MOCVD), we report a GaN monolayer in a buckled geometry obtained in confinement at the graphene/SiC interface. Conductive atomic force microscopy (C-AFM) was used to investigate vertical current injection across the graphene/SiC interface and to establish the uniformity of the intercalated regions. Scanning transmission electron microscopy (S/TEM) was used for atomic resolution imaging and spectroscopy along the growth direction. The experimentally obtained value of the buckling parameter, 1.01 & PLUSMN; 0.11 & ANGS;, adds to the existing knowledge of buckled GaN monolayers, which is based solely on predictive first-principles calculations. Our study reveals a discontinuity in the anticipated stacking sequence attributed to a few-layer graphitic-like GaN structure. Instead, we identify an atomic order suggestive of ultrathin gallium oxide Ga2O3, whose formation is apparently mediated by dissociative adsorption of oxygen onto the GaN monolayer. An atomic resolution image of an intercalated structure at a graphene/SiC interface along the growth direction which is determined as a buckled GaN monolayer at the immediate interface with an underlying SiC substrate and ultrathin Ga2O3 on top.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16
Typ av publikation
tidskriftsartikel (16)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Gueorguiev, Gueorgui ... (13)
Kakanakova-Gueorguie ... (10)
Sangiovanni, Davide (4)
Giannazzo, Filippo (4)
Pecz, Bela (4)
Hultman, Lars (3)
visa fler...
Hsiao, Ching-Lien, 1 ... (3)
dos Santos, Renato B ... (3)
Birch, Jens, 1960- (3)
Ivanov, Ivan Gueorgu ... (3)
Nicotra, Giuseppe (3)
Cora, Ildiko (3)
Birch, Jens (2)
Hultman, Lars, Profe ... (2)
Gueorguiev, Gueorgui ... (2)
Chang, Jui-Che (2)
Hsiao, Ching-Lien (2)
Faccio, Ricardo (2)
Suwannaharn, Nattamo ... (2)
Shieh, Jia-Min (1)
Schmidt, Susann (1)
Rosén, Johanna (1)
Högberg, Hans (1)
Broitman, Esteban (1)
Bairagi, Samiran (1)
Persson, Per O A (1)
Alves Machado Filho, ... (1)
Näslund, Lars-Åke (1)
Järrendahl, Kenneth, ... (1)
Lai, Chung-Chuan (1)
Tarntair, Fu-Gow (1)
Wu, Wan-Yu (1)
de Almeida, Edward F ... (1)
Magnusson, Roger, 19 ... (1)
Lin, Kun-Lin (1)
Hsu, Shao-Hui (1)
Horng, Ray-Hua (1)
Bakhit, Babak, 1983- (1)
Greczynski, Grzegorz ... (1)
Rivelino, Roberto (1)
Eriksson, Fredrik, 1 ... (1)
Kostov Gueorguiev, G ... (1)
Sandström, Per, 1970 ... (1)
Chih-Wei, Chih-Wei (1)
de Almeida Jr, Edwar ... (1)
de Oliveira, Maria I ... (1)
Mota, Fernando de Br ... (1)
Moreno, Roberto Rive ... (1)
Goyenola, Cecilia (1)
Lundgren, Christoffe ... (1)
visa färre...
Lärosäte
Linköpings universitet (16)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy