SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guizar Sicairos Manuel) srt2:(2022)"

Sökning: WFRF:(Guizar Sicairos Manuel) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Corona, Patrick T., et al. (författare)
  • Fingerprinting soft material nanostructure response to complex flow histories
  • 2022
  • Ingår i: Physical Review Materials. - 2475-9953. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the complex connection between flow-processing history, fluid structure, and fluid properties represents a grand challenge for the engineering and fundamental study of nanostructured soft materials. To address this challenge, we report measurements using scanning small-angle x-ray scattering in a fluidic four-roll mill (FFoRM), which enables rapid nanostructural characterization of complex fluids under an unprecedentedly diverse range of flow histories. Combining this technique with analysis of the Lagrangian deformation history of fluid elements, we demonstrate rapid mapping of orientational ordering of fluids' nanostructure along diverse deformation trajectories that emulate those encountered in flow processing. Using demonstrative experiments on model rodlike nanoparticle dispersions, we show that differences in rod flexibility and rod-rod interactions play a significant role in determining the fluid's anisotropic structural response to similar flow histories. An analysis of the coupling between measured particle alignment and interparticle correlations reveals these differences to arise from the nature and strength of interparticle interactions in flow. These measurement and analysis techniques produce large datasets that hold promise toward advancing process-structure-property models and inverse design processes of flows that are tailored to produce targeted nanostructures.
  •  
2.
  • Finnilä, Mikko A J, et al. (författare)
  • Mineral Crystal Thickness in Calcified Cartilage and Subchondral Bone in Healthy and Osteoarthritic Human Knees
  • 2022
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 37:9, s. 1700-1710
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) is the most common joint disease, where articular cartilage degradation is often accompanied with sclerosis of the subchondral bone. However, the association between OA and tissue mineralization at the nanostructural level is currently not understood. In particular, it is technically challenging to study calcified cartilage, where relevant but poorly understood pathological processes such as tidemark multiplication and advancement occur. Here, we used state-of-the-art microfocus small-angle X-ray scattering with a 5-μm spatial resolution to determine the size and organization of the mineral crystals at the nanostructural level in human subchondral bone and calcified cartilage. Specimens with a wide spectrum of OA severities were acquired from both medial and lateral compartments of medial compartment knee OA patients (n = 15) and cadaver knees (n = 10). Opposing the common notion, we found that calcified cartilage has thicker and more mutually aligned mineral crystals than adjoining bone. In addition, we, for the first time, identified a well-defined layer of calcified cartilage associated with pathological tidemark multiplication, containing 0.32 nm thicker crystals compared to the rest of calcified cartilage. Finally, we found 0.2 nm thicker mineral crystals in both tissues of the lateral compartment in OA compared with healthy knees, indicating a loading-related disease process because the lateral compartment is typically less loaded in medial compartment knee OA. In summary, we report novel changes in mineral crystal thickness during OA. Our data suggest that unloading in the knee might be involved with the growth of mineral crystals, which is especially evident in the calcified cartilage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy