SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gunathilake S. M.S.) "

Search: WFRF:(Gunathilake S. M.S.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bandara, Tmwj, et al. (author)
  • Efficiency enhancement and chrono-photoelectron generation in dye-sensitized solar cells based on spin-coated TiO2 nanoparticle multilayer photoanodes and a ternary iodide gel polymer electrolyte
  • 2023
  • In: Journal of Materials Science-Materials in Electronics. - 0957-4522. ; 34:28
  • Journal article (peer-reviewed)abstract
    • The effect of the thickness of a multilayer TiO2 photoanode on the performance of a dye-sensitized solar cell (DSC) made with a polyethylene oxide-based gel polymer electrolyte containing ternary iodides and performance enhancer 4-tert-butylpyridine is studied. Multilayer photoanodes consisting of up to seven layers of TiO2 nano-particles (13 nm and 21 nm) are prepared by spin coating of successive layers. XRD results confirm the predominant presence of the anatase phase of TiO2 in the multilayer structure after sintering. The SEM images reveal the formation of a single TiO2 film upon sintering due to merging of individually deposited layers. The photocurrent density (J(SC)) and the efficiency increase with the number of TiO2 layers exhibiting the maximum efficiency and J(SC) of 5.5% and 12.5 mA cm(-2), respectively, for the 5-layered electrode of total thickness 4.0 mu m with a 9.66 x 10(-8) mol cm(-2) surface dye concentration. The present study introduces a method of determining the rate of effective photoelectron generation and the average time gap between two successive photon absorptions where the respective results are 1.34 molecule(-1) s(-1) and 0.74 s for the most efficient cell studied in this work.
  •  
2.
  • Bandara, T M W J, 1968, et al. (author)
  • Transport parameters of charge carriers in PEO-LiTf-based, plasticized, composite, and plasticized-composite electrolytes intended for Li-ion batteries
  • 2022
  • In: Ionics. - : Springer Science and Business Media LLC. - 0947-7047 .- 1862-0760. ; 28:6, s. 2701-2714
  • Journal article (peer-reviewed)abstract
    • Solid polymer electrolytes are a key component in many electrochemical devices such as dye-sensitized solar cells, batteries, and supercapacitors. In this study, three electrolytes based on polyethylene oxide (PEO) host polymer, ethylene carbonate (EC) plasticizer, and Al2O3 filler were investigated. The polymer electrolytes (PEO)9(EC)9(LiCF3SO3)2, (PEO)9(LiCF3SO3)2(Al2O3)0.75, and (PEO)9(EC)9(LiCF3SO3)2(Al2O3)0.75 were characterized by analyzing DC conductivity, the frequency dependence of AC conductivity, and complex dielectric function. The conductivities of the plasticized, composite, and plasticized-composite electrolytes at 26 °C increase from 6.25, 0.009, and 2.96 mS cm-1 to 21.5, 0.12, and 11.4 mS cm-1, respectively, when the temperature increased to 70 °C. For the in-depth analysis of electrolytes, dielectric analysis was used to determine the charge carrier density (n), mobility (μ), and diffusion coefficient (D) using a newly developed method. Further, the investigation extended to study the temperature dependence of n, D, and μ. The study reveals that EC can increase the ionic conductivity by increasing n, and conversely, filler contributes by increasing μ, respectively. At 26 °C, (PEO)9(EC)9(LiCF3SO3)2(Al2O3)0.75 shows D, μ, and n of 3.8×10-11 m2 s-1, 1.5×10-9 m2 V-1 s-1, and 1.3×1027 m-3, respectively. The values obtained for D, μ, and n parameters of the plasticized electrolytes agree with those available for similar electrolytes, while the composite electrolyte showed considerably lower values for n. The complex impedance analysis can be used to determine transport parameters of all the types (plasticized, composite, and plasticized composite) of polymer electrolytes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view