SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gurnett M) srt2:(2005-2009)"

Sökning: WFRF:(Gurnett M) > (2005-2009)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wahlund, J. E., et al. (författare)
  • Detection of dusty plasma near the E-ring of Saturn
  • 2009
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:14-15, s. 1795-1806
  • Tidskriftsartikel (refereegranskat)abstract
    • We present several independent in-situ measurements, which provide evidence that charged dust in the E-ring interacts collectively with the dense surrounding plasma disk of Saturn, i.e., form a system of dust-plasma interaction. The results are based on data sampled by the Radio and Plasma Wave Science (RPWS) investigation onboard Cassini, which allows for interferometry of plasma density inhomogeneities (delta n/n) with two antenna elements and a Langmuir probe sensor. The interferometer experiment detects two ion populations: one co-rotating with the planetary magnetic field and another moving with near Keplerian speed around Saturn. The full range of RPWS measurements indicates that the Keplerian population consists of colder ions (T-i
  •  
2.
  • Farrell, W. M., et al. (författare)
  • Mass unloading along the inner edge of the Enceladus plasma torus
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:2, s. L02203-
  • Tidskriftsartikel (refereegranskat)abstract
    • A major discovery made by the Cassini spacecraft at Saturn was the substantial mass ejection from the south pole of Enceladus. Previous studies show that this ejected gas can become ionized and subsequently load mass onto the connecting magnetic field lines near the moon. Radial diffusion then allows the mass-loaded field lines to move outward to similar to 15 R-s and inward to similar to 2 R-s, forming a plasma torus. We demonstrate herein that the mass is also '' unloaded '' along the inner edge of this plasma torus the edge incident with the plasma-absorbing A-ring. Interpreting down-drifting z-mode tones from active sites along the inner edge of the ion torus as emission near the local electron plasma frequency, f(pe), we can remotely-monitor this reduction in plasma density along the torus inner edge as a function time. We find that the down-drift of the z-mode tones corresponds typically to a plasma density change dn/dt similar to - 5x10(-4)/cm(3)-s and when integrated over an annulus defined by the outer edge of the A-ring, corresponds to a mass loss of similar to 40 kg/s. Using the z-mode tones, we also find locations where plasma mass from the ring-ionosphere is possibly loaded at 1 - 2 kg/s onto field lines near the Cassini gap.
  •  
3.
  • Farrell, W. M., et al. (författare)
  • Electron density dropout near Enceladus in the context of water-vapor and water-ice
  • 2009
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 36:10, s. L10203-
  • Tidskriftsartikel (refereegranskat)abstract
    • On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from similar to 90 cl/cm(3) to below 20 cl/cm(3) that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.
  •  
4.
  • Garnier, P., et al. (författare)
  • Titan's ionosphere in the magnetosheath : Cassini RPWS results during the T32 flyby
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:11, s. 4257-4272
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini mission has provided much information about the Titan environment, with numerous low altitude encounters with the moon being always inside the magnetosphere. The only encounter taking place outside the magnetopause, in the magnetosheath, occurred the 13 June 2007 (T32 flyby). This paper is dedicated to the analysis of the Radio and Plasma Wave investigation data during this specific encounter, in particular with the Langmuir probe, providing a detailed picture of the cold plasma environment and of Titan's ionosphere with these unique plasma conditions. The various pressure terms were also calculated during the flyby. The comparison with the T30 flyby, whose geometry was very similar to the T32 encounter but where Titan was immersed in the kronian magnetosphere, reveals that the evolution of the incident plasma has a significant influence on the structure of the ionosphere, with in particular a change of the exo-ionospheric shape. The electrical conductivities are given along the trajectory of the spacecraft and the discovery of a polar plasma cavity is reported.
  •  
5.
  • Gurnett, M, et al. (författare)
  • Core-level spectroscopy study of the Li/Si(111)-3 x 1, Na/Si(111)-3 x 1, and K/Si(111)-3 x 1 surfaces
  • 2005
  • Ingår i: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 71:19
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article we report Si 2p core-level spectroscopy results from the alkali (Li, Na, and K) induced Si(111)-3 x 1 reconstructions. The experimental results are compared to the theoretical honeycomb-chain channel (HCC) model for,the 3 x 1 reconstruction using density functional theory (DFT) to calculate core-level shifts using both initial and final-state calculation schemes. Si 2p core-level spectra for the Li, Na, and K reconstructions showed two surface related components lying on either side of the main bulk Si 2P(3/2) peak. An additional higher binding energy component was found for K. All core-level spectra showed strong similarities leading to the conclusion that the surfaces do indeed share a common structure. With increasing alkali metal size, the lower binding energy component was found to shift away from the main bulk peak. Our theoretical calculations also show a similar trend. It is concluded that the lower binding energy surface component originates from the alkali atom bonded Si atoms. The origin of the higher binding energy component was determined based on trends in the peak height and final-state DFT calculations. It was found that this component derives from several atoms in the first and second layers. Calculations which include final-state effects were found to be in good agreement with the experimentally determined surface core-level shifts.
  •  
6.
  •  
7.
  • Morooka, Michiko, et al. (författare)
  • The electron density of Saturn's magnetosphere
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:7, s. 2971-2991
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated statistically the electron density below 5 cm(-3) in the magnetosphere of Saturn (7-80 R-S, Saturn radii) using 44 orbits of the floating potential data from the RPWS Langmuir probe (LP) onboard Cassini. The density distribution shows a clear dependence on the distance from the Saturnian rotation axis (root X-2 + Y-2) as well as on the distance from the equatorial plane (vertical bar Z vertical bar), indicating a disc-like structure. From the characteristics of the density distribution, we have identified three regions: the extension of the plasma disc, the magnetodisc region, and the lobe regions. The plasma disc region is at L<15, where L is the radial distance to the equatorial crossing of the dipole magnetic field line, and confined to vertical bar Z vertical bar <5 R-S. The magnetodisc is located beyond L=15, and its density has a large variability. The variability has quasi-periodic characteristics with a periodicity corresponding to the planetary rotation. For Z > 15 R-S, the magnetospheric density distribution becomes constant in Z. However, the density still varies quasi-periodically with the planetary rotation also in this region. In fact, the quasi-periodic variation has been observed all over the magnetosphere beyond L=15. The region above Z=15 R-S is identified as the lobe region. We also found that the magnetosphere can occasionally move latitudinally under the control of the density in the magnetosphere and the solar wind. From the empirical distributions of the electron densities obtained in this study, we have constructed an electron density model of the Saturnian nightside magnetosphere beyond 7 R-S. The obtained model can well reproduce the observed density distribution, and can thus be useful for magnetospheric modelling studies.
  •  
8.
  • Persoon, A. M., et al. (författare)
  • A diffusive equilibrium model for the plasma density in Saturn's magnetosphere
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:4, s. A04211-
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron density measurements have been obtained by the Cassini Radio and Plasma Wave Science (RPWS) instrument for more than 50 passes through Saturn's inner magnetosphere from 30 June 2004 to 30 September 2007. The electron densities are derived from RPWS measurements of the upper hybrid resonance frequency and span latitudes up to 35 degrees and L values from 3.6 to 10. The electron density measurements are combined with ion anisotropy measurements from the Cassini Plasma Spectrometer (CAPS) and electron temperature measurements from the RPWS and CAPS to develop a diffusive equilibrium model for the distribution of water group ions, hydrogen ions, and electrons in the inner region of Saturn's magnetosphere. The model uses an analytical solution of the field-aligned force equation, including the ambipolar electric field, to determine the equatorial ion densities and scale heights as a function of L. Density contour plots for water group ions, hydrogen ions, and electrons are presented.
  •  
9.
  • Wahlund, J E, et al. (författare)
  • Science opportunities with a double Langmuir probe and electric field experiment for JIMO
  • 2005
  • Ingår i: PLANETARY ATMOSPHERES, IONOSPHERES, AND MAGNETOSPHERES. - : Elsevier BV. ; , s. 2110-2119
  • Konferensbidrag (refereegranskat)abstract
    • The three icy Galilean moons of Jupiter: Callisto, Ganymede, and Europa, offer a range of exciting science opportunities for space physics and aeronomy. They all have thin atmospheres with residence times of a few days at most. The surface interactions with the space environment determine the atmospheric and ionospheric properties. The Jupiter Icy Moons Orbiter (JIMO) gives possibilities to investigate the weathering properties of their surfaces and volatile material expelled from their interiors. The atmospheres and the ionized ionospheric components of the Galilean moons (including the volcanic moon Io) interact strongly with the co-rotating magnetosphere of Jupiter. This interaction is dynamic and for example triggers energy transfer processes that give rise to auroral signatures at Jupiter. The icy moon's ionospheres are likewise highly variable in time and estimated peak electron densities vary between 1000 and 20,000 cm(-3) near their surfaces. A particularly interesting interaction occurs between the magnetosphere of Jupiter and the mini-magnetosphere of Ganymede and its ionosphere. A double-Langmuir probe (LP) experiment orbiting the moons at a short distance for several months will give valuable insight into these processes. Foremost the LP measures in situ plasma density and temperatures of the ionospheric components of the moons with high time resolution and thereby provides estimates of key parameters for the dynamical behaviour of surface weathering and magnetospheric influences. In addition many other physical parameters important to the dynamics of these systems can be estimated with such an instrument, like the plasma flow and the DC electric field. Recent results from the LP part of the Radio and Plasma Wave Science (RPWS) on board the Cassini/Huygens spacecraft orbiting Saturn show that an LP works in extended plasma parameter domains with very good science return.
  •  
10.
  • Modolo, Ronan, et al. (författare)
  • Plasma environment in the wake of Titan from hybrid simulation : A case study
  • 2007
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 34:24, s. L24S07-
  • Tidskriftsartikel (refereegranskat)abstract
    • On 26 December 2005, the Cassini spacecraft flew through Titan's plasma wake and revealed a complex and dynamic region. Observations suggest a strong asymmetry which seems to be displaced from the ideal position of the wake. Two distinct plasma regions are identified with a significant difference on the electron number density and on the plasma composition. Simulation results using a three-dimensional and multi-species hybrid model, performed in conditions similar to those encountered during the flyby, are presented and compared to the observations. An acceptable agreement is shown between the model predictions and the observations. We suggest that the observed asymmetries, in terms of density and plasma composition, are mainly caused by the a combination of the asymmetry in the ion/electron production rate and the magnetic field morphology, where the first plasma region is connected to the dayside hemisphere of Titan's ionosphere while the other is connected to the nightside hemisphere.
  •  
11.
  • Wahlund, Jan Erik, et al. (författare)
  • On the amount of heavy molecular ions in Titan's ionosphere
  • 2009
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:14-15, s. 1857-1865
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observational evidence that the ionosphere of Titan below an altitude of 1150 km is a significant source of heavy (> 100 amu) molecular organic species. This study is based on measurements by five instruments (RPWS/LP, RPWS/E, INMS, CAPS/ELS, CAPS/IBS) onboard the Cassini spacecraft during three flybys (T17, T18, T32) of Titan. The ionospheric peaks encountered at altitudes of 950-1300 km had densities in the range 900-3000 cm(-3). Below these peaks the number densities of heavy positively charged ions reached 100-2000 cm(-3) and approached 50-70% of the total ionospheric density with an increasing trend toward lowest measured altitudes. Simultaneously measured negatively charged ion densities were in the range 50-150 cm(-3). These results imply that similar to 10(5)similar to 10(6) heavy positively charged ions/m(3)/s are continuously recombining into heavy neutrals and supply the atmosphere of Titan. The ionosphere may in this way produce 0.1-1 Mt/yr of heavy organic compounds and is therefore a sizable source for aerosol formation. We also predict that Titan's ionosphere is dominated by heavy (> 100 amu) molecular ions below 950 km.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy