SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gustafsson Christian Jamtheim) srt2:(2020)"

Sökning: WFRF:(Gustafsson Christian Jamtheim) > (2020)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Christian Jamtheim, et al. (författare)
  • Development and evaluation of a deep learning based artificial intelligence for automatic identification of gold fiducial markers in an MRI-only prostate radiotherapy workflow
  • 2020
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 1361-6560 .- 0031-9155. ; 65:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of prostate gold fiducial markers in magnetic resonance imaging (MRI) images is challenging when CT images are not available, due to misclassifications from intra-prostatic calcifications. It is also a time consuming task and automated identification methods have been suggested as an improvement for both objectives. Multi-echo gradient echo (MEGRE) images have been utilized for manual fiducial identification with 100% detection accuracy. The aim is therefore to develop an automatic deep learning based method for fiducial identification in MRI images intended for MRI-only prostate radiotherapy. MEGRE images from 326 prostate cancer patients with fiducials were acquired on a 3T MRI, post-processed with N4 bias correction, and the fiducial center of mass (CoM) was identified. A 9 mm radius sphere was created around the CoM as ground truth. A deep learning HighRes3DNet model for semantic segmentation was trained using image augmentation. The model was applied to 39 MRI-only patients and 3D probability maps for fiducial location and segmentation were produced and spatially smoothed. In each of the three largest probability peaks, a 9 mm radius sphere was defined. Detection sensitivity and geometric accuracy was assessed. To raise awareness of potential false findings a 'BeAware' score was developed, calculated from the total number and quality of the probability peaks. All datasets, annotations and source code used were made publicly available. The detection sensitivity for all fiducials were 97.4%. Thirty-six out of thirty-nine patients had all fiducial markers correctly identified. All three failed patients generated a user notification using the BeAware score. The mean absolute difference between the detected fiducial and ground truth CoM was 0.7 ± 0.9 [0 3.1] mm. A deep learning method for automatic fiducial identification in MRI images was developed and evaluated with state-of-the-art results. The BeAware score has the potential to notify the user regarding patients where the proposed method is uncertain.
  •  
2.
  • Lerner, Minna, et al. (författare)
  • MRI-only based treatment with a commercial deep-learning generation method for synthetic CT of brain
  • 2020
  • Ingår i: ; , s. 47-47
  • Konferensbidrag (refereegranskat)abstract
    • ObjectivesTo show feasibility of synthetic computed tomography (sCT) images generated using a commerciallyavailable software, enabling MRI-only treatment planning for the brain in a clinical setting.Patients and Methods20 and 16 patients with brain malignancies, including post-surgical cases, were included for validationand treatment, respectively. Dixon MR images of the skull were exported to the MRI Planner software(Spectronic Medical AB), which utilizes convolutional neural network algorithms for sCT generation.In the validation study, sCT images were rigidly registered and resampled to CT geometry for eachpatient. Treatment plans were optimized on CT and retrospectively recalculated on sCT images forevaluation of dosimetric and geometric endpoints. Clinical robustness in patient setup verification wasassessed by rigidly registering cone beam CT (CBCT) to sCT and CT images, respectively.The treatment study was performed on sCT images, using CT solely for QA purposes.ResultsAll sCT images were successfully generated in the validation study. Mean absolute error of the sCTimages within the body contour for all patients was 62.2 ± 4.1 HU. Average absorbed dose differenceswere below 0.2%. Mean pass rate of global gamma (1%/1mm) for all patients was 100.0 ± 0.0 % withinPTV and 99.1 ± 0.6 % for the full dose distribution. No clinically relevant deviations were found in theCBCT-sCT vs CBCT-CT image registrations. Areas of bone resection due to surgery were accuratelydepicted in the sCT images. Finally, treatment success rate was 15/16. One patient was excluded due tosCT artifacts from a haemostatic substance injected during surgery.Conclusion15 patients have successfully received MRI-only RT for brain tumours using the validated commerciallyavailable sCT software. Validation showed comparable results between sCT and CT images for bothdosimetric and geometric endpoints
  •  
3.
  • Mannerberg, Annika, et al. (författare)
  • Dosimetric effects of adaptive prostate cancer radiotherapy in an MR-linac workflow
  • 2020
  • Ingår i: Radiation oncology (London, England). - : Springer Science and Business Media LLC. - 1748-717X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The purpose was to evaluate the dosimetric effects in prostate cancer treatment caused by anatomical changes occurring during the time frame of adaptive replanning in a magnetic resonance linear accelerator (MR-linac) workflow. METHODS: Two MR images (MR1 and MR2) were acquired with 30 min apart for each of the 35 patients enrolled in this study. The clinical target volume (CTV) and organs at risk (OARs) were delineated based on MR1. Using a synthetic CT (sCT), ultra-hypofractionated VMAT treatment plans were created for MR1, with three different planning target volume (PTV) margins of 7 mm, 5 mm and 3 mm. The three treatment plans of MR1, were recalculated onto MR2 using its corresponding sCT. The dose distribution of MR2 represented delivered dose to the patient after 30 min of adaptive replanning, omitting motion correction before beam on. MR2 was registered to MR1, using deformable registration. Using the inverse deformation, the structures of MR1 was deformed to fit MR2 and anatomical changes were quantified. For dose distribution comparison the dose distribution of MR2 was warped to the geometry MR1. RESULTS: The mean center of mass vector offset for the CTV was 1.92 mm [0.13 - 9.79 mm]. Bladder volume increase ranged from 12.4 to 133.0% and rectum volume difference varied between -10.9 and 38.8%. Using the conventional 7 mm planning target volume (PTV) margin the dose reduction to the CTV was 1.1%. Corresponding values for 5 mm and 3 mm PTV margin were 2.0% and 4.2% respectively. The dose to the PTV and OARs also decreased from D1 to D2, for all PTV margins evaluated. Statistically significant difference was found for CTV Dmin between D1 and D2 for the 3 mm PTV margin (p < 0.01). CONCLUSIONS: A target underdosage caused by anatomical changes occurring during the reported time frame for adaptive replanning MR-linac workflows was found. Volume changes in both bladder and rectum caused large prostate displacements. This indicates the importance of thorough position verification before treatment delivery and that the workflow needs to speed up before introducing margin reduction.
  •  
4.
  • Persson, Emilia, et al. (författare)
  • MR-PROTECT : Clinical feasibility of a prostate MRI-only radiotherapy treatment workflow and investigation of acceptance criteria
  • 2020
  • Ingår i: Radiation Oncology. - : Springer Science and Business Media LLC. - 1748-717X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Retrospective studies on MRI-only radiotherapy have been presented. Widespread clinical implementations of MRI-only workflows are however limited by the absence of guidelines. The MR-PROTECT trial presents an MRI-only radiotherapy workflow for prostate cancer using a new single sequence strategy. The workflow incorporated the commercial synthetic CT (sCT) generation software MriPlanner™ (Spectronic Medical, Helsingborg, Sweden). Feasibility of the workflow and limits for acceptance criteria were investigated for the suggested workflow with the aim to facilitate future clinical implementations. Methods: An MRI-only workflow including imaging, post imaging tasks, treatment plan creation, quality assurance and treatment delivery was created with questionnaires. All tasks were performed in a single MR-sequence geometry, eliminating image registrations. Prospective CT-quality assurance (QA) was performed prior treatment comparing the PTV mean dose between sCT and CT dose-distributions. Retrospective analysis of the MRI-only gold fiducial marker (GFM) identification, DVH- analysis, gamma evaluation and patient set-up verification using GFMs and cone beam CT were performed. Results: An MRI-only treatment was delivered to 39 out of 40 patients. The excluded patient was too large for the predefined imaging field-of-view. All tasks could successfully be performed for the treated patients. There was a maximum deviation of 1.2% in PTV mean dose was seen in the prospective CT-QA. Retrospective analysis showed a maximum deviation below 2% in the DVH-analysis after correction for rectal gas and gamma pass-rates above 98%. MRI-only patient set-up deviation was below 2 mm for all but one investigated case and a maximum of 2.2 mm deviation in the GFM-identification compared to CT. Conclusions: The MR-PROTECT trial shows the feasibility of an MRI-only prostate radiotherapy workflow. A major advantage with the presented workflow is the incorporation of a sCT-generation method with multi-vendor capability. The presented single sequence approach are easily adapted by other clinics and the general implementation procedure can be replicated. The dose deviation and the gamma pass-rate acceptance criteria earlier suggested was achievable, and these limits can thereby be confirmed. GFM-identification acceptance criteria are depending on the choice of identification method and slice thickness. Patient positioning strategies needs further investigations to establish acceptance criteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy