SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gustafsson Christian Jamtheim) srt2:(2021)"

Sökning: WFRF:(Gustafsson Christian Jamtheim) > (2021)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jamtheim Gustafsson, Christian, et al. (författare)
  • Deep learning-based classification and structure name standardization for organ at risk and target delineations in prostate cancer radiotherapy
  • 2021
  • Ingår i: Journal of Applied Clinical Medical Physics. - : John Wiley & Sons. - 1526-9914. ; 22:12, s. 51-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiotherapy (RT) datasets can suffer from variations in annotation of organ at risk (OAR) and target structures. Annotation standards exist, but their description for prostate targets is limited. This restricts the use of such data for supervised machine learning purposes as it requires properly annotated data. The aim of this work was to develop a modality independent deep learning (DL) model for automatic classification and annotation of prostate RT DICOM structures.Delineated prostate organs at risk (OAR), support- and target structures (gross tumor volume [GTV]/clinical target volume [CTV]/planning target volume [PTV]), along with or without separate vesicles and/or lymph nodes, were extracted as binary masks from 1854 patients. An image modality independent 2D InceptionResNetV2 classification network was trained with varying amounts of training data using four image input channels. Channel 1–3 consisted of orthogonal 2D projections from each individual binary structure. The fourth channel contained a summation of the other available binary structure masks. Structure classification performance was assessed in independent CT (n = 200 pat) and magnetic resonance imaging (MRI) (n = 40 pat) test datasets and an external CT (n = 99 pat) dataset from another clinic.A weighted classification accuracy of 99.4% was achieved during training. The unweighted classification accuracy and the weighted average F1 score among different structures in the CT test dataset were 98.8% and 98.4% and 98.6% and 98.5% for the MRI test dataset, respectively. The external CT dataset yielded the corresponding results 98.4% and 98.7% when analyzed for trained structures only, and results from the full dataset yielded 79.6% and 75.2%. Most misclassifications in the external CT dataset occurred due to multiple CTVs and PTVs being fused together, which was not included in the training data.Our proposed DL-based method for automated renaming and standardization of prostate radiotherapy annotations shows great potential. Clinic specific contouring standards however need to be represented in the training data for successful use. Source code is available at https://github.com/jamtheim/DicomRTStructRenamerPublic
  •  
2.
  • Lempart, Michael, et al. (författare)
  • A deeply supervised convolutional neural network ensemble for multilabel segmentation of pelvic OARs
  • 2021
  • Ingår i: Radiotherapy and Oncology. - 1879-0887. ; 161:Suppl 1, s. 1417-1418
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Accurate delineation of organs at risk (OAR) is a crucial step in radiation therapy (RT) treatment planning but is a manual and time-consuming process. Deep learning-based methods have shown promising results for medical image segmentation and can be used to accelerate this task. Nevertheless, it is rarely applied to complex structures found in the pelvis region, where manual segmentation can be difficult, costly and is not always feasible. The aim of this study was to train and validate a model, based on a modified U-Net architecture, for automated and improved multilabel segmentation of 10 pelvic OAR structures (total bone marrow, lower pelvis bone marrow, iliac bone marrow, lumosacral bone marrow, bowel cavity, bowel, small bowel, large bowel, rectum, and bladder).
  •  
3.
  • Lempart, Michael, et al. (författare)
  • Volumetric modulated arc therapy dose prediction and deliverable treatment plan generation for prostate cancer patients using a densely connected deep learning model
  • 2021
  • Ingår i: Physics and imaging in radiation oncology. - : Elsevier BV. - 2405-6316. ; 19, s. 112-119
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: Radiation therapy treatment planning is a manual, time-consuming task that might be accelerated using machine learning algorithms. In this study, we aimed to evaluate if a triplet-based deep learning model can predict volumetric modulated arc therapy (VMAT) dose distributions for prostate cancer patients. Materials and methods: A modified U-Net was trained on triplets, a combination of three consecutive image slices and corresponding segmentations, from 160 patients, and compared to a baseline U-Net. Dose predictions from 17 test patients were transformed into deliverable treatment plans using a novel planning workflow. Results: The model achieved a mean absolute dose error of 1.3%, 1.9%, 1.0% and ≤ 2.6% for clinical target volume (CTV) CTV_D100%, planning target volume (PTV) PTV_D98%, PTV_D95% and organs at risk (OAR) respectively, when compared to the clinical ground truth (GT) dose distributions. All predicted distributions were successfully transformed into deliverable treatment plans and tested on a phantom, resulting in a passing rate of 100% (global gamma, 3%, 2 mm, 15% cutoff). The dose difference between deliverable treatment plans and GT dose distributions was within 4.4%. The difference between the baseline model and our improved model was statistically significant (p < 0.05) for CVT_D100%, PTV_D98% and PTV_D95%. Conclusion: Triplet-based training improved VMAT dose distribution predictions when compared to 2D. Dose predictions were successfully transformed into deliverable treatment plans using our proposed treatment planning procedure. Our method may automate parts of the workflow for external beam prostate radiation therapy and improve the overall treatment speed and plan quality.
  •  
4.
  • Lerner, Minna, et al. (författare)
  • Clinical validation of a commercially available deep learning software for synthetic CT generation for brain
  • 2021
  • Ingår i: Radiation Oncology. - : Springer Science and Business Media LLC. - 1748-717X. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Most studies on synthetic computed tomography (sCT) generation for brain rely on in-house developed methods. They often focus on performance rather than clinical feasibility. Therefore, the aim of this work was to validate sCT images generated using a commercially available software, based on a convolutional neural network (CNN) algorithm, to enable MRI-only treatment planning for the brain in a clinical setting. Methods: This prospective study included 20 patients with brain malignancies of which 14 had areas of resected skull bone due to surgery. A Dixon magnetic resonance (MR) acquisition sequence for sCT generation was added to the clinical brain MR-protocol. The corresponding sCT images were provided by the software MRI Planner (Spectronic Medical AB, Sweden). sCT images were rigidly registered and resampled to CT for each patient. Treatment plans were optimized on CT and recalculated on sCT images for evaluation of dosimetric and geometric endpoints. Further analysis was also performed for the post-surgical cases. Clinical robustness in patient setup verification was assessed by rigidly registering cone beam CT (CBCT) to sCT and CT images, respectively. Results: All sCT images were successfully generated. Areas of bone resection due to surgery were accurately depicted. Mean absolute error of the sCT images within the body contour for all patients was 62.2 ± 4.1 HU. Average absorbed dose differences were below 0.2% for parameters evaluated for both targets and organs at risk. Mean pass rate of global gamma (1%/1 mm) for all patients was 100.0 ± 0.0% within PTV and 99.1 ± 0.6% for the full dose distribution. No clinically relevant deviations were found in the CBCT-sCT vs CBCT-CT image registrations. In addition, mean values of voxel-wise patient specific geometric distortion in the Dixon images for sCT generation were below 0.1 mm for soft tissue, and below 0.2 mm for air and bone. Conclusions: This work successfully validated a commercially available CNN-based software for sCT generation. Results were comparable for sCT and CT images in both dosimetric and geometric evaluation, for both patients with and without anatomical anomalies. Thus, MRI Planner is feasible to use for radiotherapy treatment planning of brain tumours.
  •  
5.
  • Persson, Emilia, et al. (författare)
  • Investigation of the clinical inter-observer bias in prostate fiducial marker image registration between CT and MR images
  • 2021
  • Ingår i: Radiation Oncology. - : Springer Science and Business Media LLC. - 1748-717X. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: Inter-modality image registration between computed tomography (CT) and magnetic resonance (MR) images is associated with systematic uncertainties and the magnitude of these uncertainties is not well documented. The purpose of this study was to investigate the potential uncertainty of gold fiducial marker (GFM) registration for localized prostate cancer and to estimate the inter-observer bias in a clinical setting. Methods: Four experienced observers registered CT and MR images for 42 prostate cancer patients. Manual GFM identification was followed by a landmark-based registration. The absolute difference between observers in GFM identification and the displacement of the clinical target volume (CTV) was investigated. The CTV center of mass (CoM) vector displacements, DICE-index and Hausdorff distances for the observer registrations were compared against a clinical baseline registration. The time allocated for the manual registrations was compared. Results: Absolute difference in GFM identification between observers ranged from 0.0 to 3.0 mm. The maximum CTV CoM displacement from the clinical baseline was 3.1 mm. Displacements larger than or equal to 1 mm, 2 mm and 3 mm were 46%, 18% and 4%, respectively. No statistically significant difference was detected between observers in terms of CTV displacement. Median DICE-index and Hausdorff distance for the CTV, with their respective ranges were 0.94 [0.70–1.00] and 2.5 mm [0.7–8.7]. Conclusions: Registration of CT and MR images using GFMs for localized prostate cancer patients was subject to inter-observer bias on an individual patient level. A CTV displacement as large as 3 mm occurred for individual patients. These results show that GFM registration in a clinical setting is associated with uncertainties, which motivates the removal of inter-modality registrations in the radiotherapy workflow and a transition to an MRI-only workflow for localized prostate cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy