SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(HOFFER BJ) "

Sökning: WFRF:(HOFFER BJ)

  • Resultat 1-50 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Chen, YH, et al. (författare)
  • Delayed Dopamine Dysfunction and Motor Deficits in Female Parkinson Model Mice
  • 2019
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 20:24
  • Tidskriftsartikel (refereegranskat)abstract
    • This study analyzed gender differences in the progressive dopamine (DA) deficiency phenotype in the MitoPark (MP) mouse model of Parkinson’s disease (PD) with progressive loss of DA release and reuptake in midbrain DA pathways. We found that the progressive loss of these DA presynaptic parameters begins significantly earlier in male than female MP mice. This was correlated with behavioral gender differences of both forced and spontaneous motor behavior. The degeneration of the nigrostriatal DA system in MP mice is earlier and more marked than that of the mesolimbic DA system, with male MP mice again being more strongly affected than female MP mice. After ovariectomy, DA presynaptic and behavioral changes in female mice become very similar to those of male animals. Our results suggest that estrogen, either directly or indirectly, is neuroprotective in the midbrain DA system. Our results are compatible with epidemiological data on incidence and symptom progression in PD, showing that men are more strongly affected than women at early ages.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Karlen, A, et al. (författare)
  • Nogo receptor 1 regulates formation of lasting memories
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 106:48, s. 20476-20481
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation of lasting memories is believed to rely on structural alterations at the synaptic level. We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories. We now show that mice with inducible overexpression of NgR1 in forebrain neurons have normal long-term potentiation and normal 24-h memory, but severely impaired month-long memory in both passive avoidance and swim maze tests. Blocking transgene expression normalizes these memory impairments. Nogo, Lingo-1, Troy, endogenous NgR1, and BDNF mRNA expression levels were not altered by transgene expression, suggesting that the impaired ability to form lasting memories is directly coupled to inability to down-regulate NgR1. Regulation of NgR1 may therefore serve as a key regulator of memory consolidation. Understanding the molecular underpinnings of synaptic rearrangements that carry lasting memories may facilitate development of treatments for memory dysfunction.
  •  
19.
  •  
20.
  • Kuo, TT, et al. (författare)
  • PT320, a Sustained-Release GLP-1 Receptor Agonist, Ameliorates L-DOPA-Induced Dyskinesia in a Mouse Model of Parkinson's Disease
  • 2023
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 24:5
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine the efficacy of PT320 on L-DOPA-induced dyskinetic behaviors, and neurochemistry in a progressive Parkinson’s disease (PD) MitoPark mouse model. To investigate the effects of PT320 on the manifestation of dyskinesia in L-DOPA-primed mice, a clinically translatable biweekly PT320 dose was administered starting at either 5 or 17-weeks-old mice. The early treatment group was given L-DOPA starting at 20 weeks of age and longitudinally evaluated up to 22 weeks. The late treatment group was given L-DOPA starting at 28 weeks of age and longitudinally observed up to 29 weeks. To explore dopaminergic transmission, fast scan cyclic voltammetry (FSCV) was utilized to measure presynaptic dopamine (DA) dynamics in striatal slices following drug treatments. Early administration of PT320 significantly mitigated the severity L-DOPA-induced abnormal involuntary movements; PT320 particularly improved excessive numbers of standing as well as abnormal paw movements, while it did not affect L-DOPA-induced locomotor hyperactivity. In contrast, late administration of PT320 did not attenuate any L-DOPA-induced dyskinesia measurements. Moreover, early treatment with PT320 was shown to not only increase tonic and phasic release of DA in striatal slices in L-DOPA-naïve MitoPark mice, but also in L-DOPA-primed animals. Early treatment with PT320 ameliorated L-DOPA-induced dyskinesia in MitoPark mice, which may be related to the progressive level of DA denervation in PD.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • TOMAC, A, et al. (författare)
  • Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult
  • 1995
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 92:18, s. 8274-8278
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently cloned, distant member of the transforming growth factor beta (TGF-beta) family, glial cell line-derived neurotrophic factor (GDNF), has potent trophic actions on fetal mesencephalic dopamine neurons. GDNF also has protective and restorative activity on adult mesencephalic dopaminergic neurons and potently protects motoneurons from axotomy-induced cell death. However, evidence for a role for endogenous GDNF as a target-derived trophic factor in adult midbrain dopaminergic circuits requires documentation of specific transport from the sites of synthesis in the target areas to the nerve cell bodies themselves. Here, we demonstrate that GDNF is retrogradely transported by mesencephalic dopamine neurons of the nigrostriatal pathway. The pattern of retrograde transport following intrastriatal injections indicates that there may be subpopulations of neurons that are GDNF responsive. Retrograde axonal transport of biologically active 125I-labeled GDNF was inhibited by an excess of unlabeled GDNF but not by an excess of cytochrome c. Specificity was further documented by demonstrating that another TGF-beta family member, TGF-beta 1, did not appear to affect retrograde transport. Retrograde transport was also demonstrated by immunohistochemistry by using intrastriatal injections of unlabeled GDNF. GDNF immunoreactivity was found specifically in dopamine nerve cell bodies of the substantia nigra pars compacta distributed in granules in the soma and proximal dendrites. Our data implicate a specific receptor-mediated uptake mechanism operating in the adult. Taken together, the present findings suggest that GDNF acts endogenously as a target-derived physiological survival/maintenance factor for dopaminergic neurons.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 54

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy