SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haddad Momeni Majid) srt2:(2015-2019)"

Sökning: WFRF:(Haddad Momeni Majid) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haddad Momeni, Majid, et al. (författare)
  • A novel starch-binding laccase from the wheat pathogen Zymoseptoria tritici highlights the functional diversity of ascomycete laccases
  • 2019
  • Ingår i: BMC Biotechnology. - : Springer Science and Business Media LLC. - 1472-6750. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Laccases are multicopper oxidases, which are assigned into auxiliary activity family 1 (AA1) in the CAZy database. These enzymes, catalyzing the oxidation of phenolic and nonphenolic substrates coupled to reduction of O2 to H2O, are increasingly attractive as eco-friendly oxidation biocatalysts. Basidiomycota laccases are well characterized due to their potential in de-lignification of lignocellulose. By contrast, insight into the biochemical diversity of Ascomycota counterparts from saprophytes and plant pathogens is scarce. Results: Here, we report the properties of the laccase from the major wheat pathogen Zymoseptoria tritici (ZtrLac1A), distinguished from common plant fungal pathogens by an apoplastic infection strategy. We demonstrate that ZtrLac1A is appended to a functional starch-binding module and displays an activity signature disfavoring relatively apolar phenolic redox mediators as compared to the related biochemically characterized laccases. By contrast, the redox potential of ZtrLac1A (370 mV vs. SHE) is similar to ascomycetes counterparts. The atypical specificity is consistent with distinctive sequence substitutions and insertions in loops flanking the T1 site and the enzyme C-terminus compared to characterized laccases. Conclusions: ZtrLac1A is the first reported modular laccase appended to a functional starch-specific carbohydrate binding module of family 20 (CBM20). The distinct specificity profile of ZtrLac1A correlates to structural differences in the active site region compared to previously described ascomycetes homologues. These differences are also highlighted by the clustering of the sequence of ZtrLac1A in a distinct clade populated predominantly by plant pathogens in the phylogenetic tree of AA1 laccases. The possible role of these laccases in vivo merits further investigations. These findings expand our toolbox of laccases for green oxidation and highlight the binding functionality of CBM-appended laccases as versatile immobilization tags.
  •  
2.
  • Haddad Momeni, Majid, et al. (författare)
  • Biochemical and Structural Characterizations of Two Dictyostelium Cellobiohydrolases from the Amoebozoa Kingdom Reveal a High Level of Conservation between Distant Phylogenetic Trees of Life
  • 2016
  • Ingår i: Applied and Environmental Microbiology. - 0099-2240 .- 1098-5336. ; 82, s. 3395-3409
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes commonly employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7A and DpuCel7A, resolved to 2.1 angstrom and 2.7 angstrom respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7A(CBM) and DpuCel7A(CBM), which were recombinantly expressed in T. reesei. DdiCel7A(CBM) and DpuCel7A(CBM) hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The K-i of cellobiose was significantly higher for DdiCel7A(CBM) and DpuCel7A(CBM) than for TreCel7A: 205, 130, and 29 mu M, respectively. Taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life.IMPORTANCEGH7 CBHs are among the most important cellulolytic enzymes both in nature and for emerging industrial applications for cellulose breakdown. Understanding the diversity of these key industrial enzymes is critical to engineering them for higher levels of activity and greater stability. The present work demonstrates that two GH7 CBHs from social amoeba are surprisingly quite similar in structure and activity to the canonical GH7 CBH from the model biomass-degrading fungus T. reesei when tested under equivalent conditions (with added CBM-linker domains) on an industrially relevant substrate.
  •  
3.
  • Haddad Momeni, Majid, et al. (författare)
  • Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo-oligosaccharides
  • 2015
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X. ; 282:11, s. 2167-2177
  • Tidskriftsartikel (refereegranskat)abstract
    • The filamentous fungus Hypocreajecorina (anamorph of Trichodermareesei) is the predominant source of enzymes for industrial saccharification of lignocellulose biomass. The major enzyme, cellobiohydrolase Cel7A, constitutes nearly half of the total protein in the secretome. The performance of such enzymes is susceptible to inhibition by compounds liberated by physico-chemical pre-treatment if the biomass is kept unwashed. Xylan and xylo-oligosaccharides (XOS) have been proposed to play a key role in inhibition of cellobiohydrolases of glycoside hydrolase family7. To elucidate the mechanism behind this inhibition at a molecular level, we used X-ray crystallography to determine structures of H.jecorina Cel7A in complex with XOS. Structures with xylotriose, xylotetraose and xylopentaose revealed a predominant binding mode at the entrance of the substrate-binding tunnel of the enzyme, in which each xylose residue is shifted similar to 2.4 angstrom towards the catalytic center compared with binding of cello-oligosaccharides. Furthermore, partial occupancy of two consecutive xylose residues at subsites -2 and -1 suggests an alternative binding mode for XOS in the vicinity of the catalytic center. Interestingly, the -1 xylosyl unit exhibits an open aldehyde conformation in one of the structures and a ring-closed pyranoside in another complex. Complementary inhibition studies with p-nitrophenyl lactoside as substrate indicate mixed inhibition rather than pure competitive inhibition. DatabaseThe atomic coordinates and structure factors are available in the Protein Data Bank under accession number (H. jecorina Cel7A E212Q variant, complex with xylotriose), (H. jecorina Cel7A E217Q variant, complex with xylotriose), (H. jecorina Cel7A E212Q variant, complex with xylopentaose), (H. jecorina Cel7A E217Q variant, complex with xylopentaose), (wild-type H. jecorina Cel7A, complex with xylopentaose) and (H. jecorina Cel7A E217Q variant, complex with xylotetraose).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy