SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hammarlund Emma U.) srt2:(2015-2019)"

Sökning: WFRF:(Hammarlund Emma U.) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Canfield, Donald E., et al. (författare)
  • A Mesoproterozoic iron formation
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 115:17, s. 3895-3904
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.
  •  
2.
  • Zhang, Shuichang, et al. (författare)
  • Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid-Proterozoic ocean
  • 2019
  • Ingår i: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 17:3, s. 225-246
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mesoproterozoic Era (1,600–1,000 million years ago, Ma) geochemical record is sparse, but, nevertheless, critical in untangling relationships between the evolution of eukaryotic ecosystems and the evolution of Earth-surface chemistry. The ca. 1,400 Ma Xiamaling Formation has experienced only very low-grade thermal maturity and has emerged as a promising geochemical archive informing on the interplay between climate, ecosystem organization, and the chemistry of the atmosphere and oceans. Indeed, the geochemical record of portions of the Xiamaling Formation has been used to place minimum constraints on concentrations of atmospheric oxygen as well as possible influences of climate and climate change on water chemistry and sedimentation dynamics. A recent study has argued, however, that some portions of the Xiamaling Formation deposited in a highly restricted environment with only limited value as a geochemical archive. In this contribution, we fully explore these arguments as well as the underlying assumptions surrounding the use of many proxies used for paleo-environmental reconstructions. In doing so, we pay particular attention to deep-water oxygen-minimum zone environments and show that these generate unique geochemical signals that have been underappreciated. These signals, however, are compatible with the geochemical record of those parts of the Xiamaling Formation interpreted as most restricted. Overall, we conclude that the Xiamaling Formation was most likely open to the global ocean throughout its depositional history. More broadly, we show that proper paleo-environmental reconstructions require an understanding of the biogeochemical signals generated in all relevant modern analogue depositional environments. We also evaluate new data on the δ 98 Mo of Xiamaling Formation shales, revealing possible unknown pathways of molybdenum sequestration into sediments and concluding, finally, that seawater at that time likely had a δ 98 Mo value of about 1.1‰.
  •  
3.
  • Hammarlund, Emma U., et al. (författare)
  • Early Cambrian oxygen minimum zone-like conditions at Chengjiang
  • 2017
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X. ; 475, s. 160-168
  • Tidskriftsartikel (refereegranskat)abstract
    • The early Cambrian succession at Chengjiang contains the most diverse Cambrian fossil assemblage yet described, and contributes significantly to our understanding of the diversification of metazoans in the Cambrian “explosion”. The Cambrian Period occupies a transitional episode of global ocean chemistry, following the oxygenation of the surface ocean and of shallow marine environments during the Ediacaran Period, but prior to the establishment of a predominantly oxygenated deep ocean in the mid-Paleozoic. Despite recent attention, a detailed understanding of the chemical conditions that prevailed in early Cambrian marine settings and the relationship of those conditions to early metazoan ecosystems is still emerging. Here, we report multi-proxy geochemical data from two drill cores through the early Cambrian (Series 2) Yu'anshan Formation of Yunnan, China. Results reveal dynamic water-column chemistry within the succession, which progressively shifted from euxinic to oxic conditions during deposition of the Yu'anshan Formation. The Chengjiang biota occurs in strata that appear to have been deposited under an oxygen-depleted water column that may have supported denitrification, as in modern oxygen-minimum zones. The oxygenated benthic environments in which the Chengjiang biota thrived were proximal to, but sharply separated from, the open ocean by a persistent anoxic water mass that occupied a portion of the outer shelf. Oxygen depletion in the lower water column developed dynamically in response to nutrient availability and possibly at lower thresholds of productivity due to lower atmospheric oxygen concentrations in Cambrian. These findings suggest that the frequent development of oxygen-limiting conditions in continental margin settings provided an environmental barrier that may have affected biogeographic, ecological and evolutionary development of early metazoan communities.
  •  
4.
  • Hammarlund, Emma U., et al. (författare)
  • Early Silurian δ 13 C org excursions in the foreland basin of Baltica, both familiar and surprising
  • 2019
  • Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology. - : Elsevier BV. - 0031-0182. ; 526, s. 126-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sommerodde-1 core from Bornholm, Denmark, provides a nearly continuous sedimentary archive from the Upper Ordovician through to the Wenlock Series (lower Silurian), as constrained by graptolite biostratigraphy. The cored mudstones represent a deep marine depositional setting in the foreland basin fringing Baltica and we present high-resolution data on the isotopic composition of the section's organic carbon (δ 13 C org ). This chemostratigraphical record is correlated with previously recognized δ 13 C excursions in the Upper Ordovician–lower Silurian, including the Hirnantian positive isotope carbon excursion (HICE), the early Aeronian positive carbon isotope excursion (EACIE), and the early Sheinwoodian positive carbon isotope excursion (ESCIE). A new positive excursion of high magnitude (~4‰)is discovered in the Telychian Oktavites spiralis Biozone (lower Silurian)and we name it the Sommerodde Carbon Isotope Excursion (SOCIE). The SOCIE appears discernible in δ 13 C carb data from Latvian and Estonian cores but it is not yet widely recognized. However, the magnitude of the excursion within the deep, marine, depositional setting, represented by the Sommerodde-1 core, suggests that the SOCIE reflects a significant event. In addition, the chemostratigraphical record of the Sommerodde-1 core reveals the negative excursion at the transition from the Aeronian to Telychian stages (the ‘Rumba low’), and suggests that the commencement of the EACIE at the base of the Demirastrites triangulatus Biozone potentially is a useful chemostratigraphical marker for the base of the Aeronian Stage.
  •  
5.
  • Hammarlund, Emma U., et al. (författare)
  • Refined control of cell stemness allowed animal evolution in the oxic realm
  • 2018
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:2, s. 220-228
  • Forskningsöversikt (refereegranskat)abstract
    • Animal diversification on Earth has long been presumed to be associated with the increasing extent of oxic niches. Here, we challenge that view. We start with the fact that hypoxia (<1-3% O2) maintains cellular immaturity (stemness), whereas adult stem cells continuously - and paradoxically - regenerate animal tissue in oxygenated settings. Novel insights from tumour biology illuminate how cell stemness nevertheless can be achieved through the action of oxygen-sensing transcription factors in oxygenated, regenerating tissue. We suggest that these hypoxia-inducible transcription factors provided animals with unprecedented control over cell stemness that allowed them to cope with fluctuating oxygen concentrations. Thus, a refinement of the cellular hypoxia-response machinery enabled cell stemness at oxic conditions and, then, animals to evolve into the oxic realm. This view on the onset of animal diversification is consistent with geological evidence and provides a new perspective on the challenges and evolution of multicellular life.
  •  
6.
  • Hammarlund, Emma U., et al. (författare)
  • The Sirius Passet Lagerstätte of North Greenland—A geochemical window on early Cambrian low-oxygen environments and ecosystems
  • 2019
  • Ingår i: Geobiology. - : Wiley. - 1472-4677. ; 17:1, s. 12-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The early Cambrian Sirius Passet fauna of northernmost Greenland (Cambrian Series 2, Stage 3) contains exceptionally preserved soft tissues that provide an important window to early animal evolution, while the surrounding sediment holds critical data on the palaeodepositional water-column chemistry. The present study combines palaeontological data with a multiproxy geochemical approach based on samples collected in situ at high stratigraphic resolution from Sirius Passet. After careful consideration of chemical alterations during burial, our results demonstrate that fossil preservation and biodiversity show significant correlation with iron enrichments (FeHR/FeT), trace metal behaviour (V/Al), and changes in nitrogen cycling (δ15N). These data, together with Mo/Al and the preservation of organic carbon (TOC), are consistent with a water column that was transiently low in oxygen concentration, or even intermittently anoxic. When compared with the biogeochemical characteristics of modern oxygen minimum zones (OMZs), geochemical and palaeontological data collectively suggest that oxygen concentrations as low as 0.2–0.4 ml/L restricted bioturbation but not the development of a largely nektobenthic community of predators and scavengers. We envisage for the Sirius Passet biota a depositional setting where anoxic water column conditions developed and passed over the depositional site, possibly in association with sea-level change, and where this early Cambrian biota was established in conditions with very low oxygen.
  •  
7.
  • Harper, David A.T., et al. (författare)
  • The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian Explosion
  • 2019
  • Ingår i: Journal of the Geological Society. - : Geological Society of London. - 0016-7649 .- 2041-479X. ; 176, s. 1023-1037
  • Tidskriftsartikel (refereegranskat)abstract
    • The lower Cambrian Lagerstätte of Sirius Passet, Peary Land, North Greenland, is one of the oldest of the Phanerozoic exceptionally preserved biotas. The Lagerstätte evidences the escalation of numbers of new body plans and life modes that formed the basis for a modern, functionally tiered ecosystem. The fauna is dominated by predators, infaunal, benthic and pelagic, and the presence of abundant nekton, including large sweep-net feeders, suggests an ecosystem rich in nutrients. Recent discoveries have helped reconstruct digestive systems and their contents, muscle fibres, and visual and nervous systems for a number of taxa. New collections have confirmed the complex combination of taphonomic pathways associated with the biota and its potentially substantial biodiversity. These complex animal-based communities within the Buen Formation were associated with microbial matgrounds, now preserved in black mudstones deposited below storm wave base that provide insight into the shift from late Neoproterozoic (Ediacaran) to Cambrian substrates and communities. Moreover, the encasing sediment holds important data on the palaeoenvironment and the water-column chemistry, suggesting that these animal-based communities developed in conditions with very low oxygen concentrations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy