SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Niklas 1992) srt2:(2020)"

Sökning: WFRF:(Hansson Niklas 1992) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hansson, Niklas, 1992, et al. (författare)
  • Alpha dose rate calculations for UO2 based materials using stopping power models
  • 2020
  • Ingår i: Nuclear Materials and Energy. - : Elsevier BV. - 2352-1791. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate dose rate models for UO2 based materials in contact with water are important in the modeling of the radiolytically promoted dissolution of spent fuel. Dose rates of α-doped UO2 and un-irradiated MOX fuel were modelled using the ASTAR and SRIM stopping power databases. Dose rates were calculated as a function of distance from the active surface. Comparisons with common dose rate calculation models and the combined Bethe-Bloch and Lindhard–Scharff (LS) equation were performed. It was shown that the ASTAR and SRIM databases could more accurately simulate an α-spectrum compared to the Bethe-Bloch-LS equation. A comparison between the continuous slowing down approximation (CSDA) and the radial projection algorithm in the SRIM program was performed, and it was shown that CSDA overestimates the range of the α-particles by a few percent. This leads to an overestimation of the α-dose rate at distances close to the maximum range of the α-particle in water. A relationship between the average dose rate to specific α-activity ratio as a function of α-energy was obtained from the calculations, which can easily be implemented in alpha dose rate calculations of a UO2 based materials.
  •  
2.
  • Hansson, Niklas, 1992 (författare)
  • The Influence of Hydrogen on the Radiolytic Oxidation of UO2
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Spent nuclear fuel from the nuclear fuel cycle contains radiotoxic nuclides which must be safely stored for over 100 000 years. The Swedish final repository concept, KBS-3, is based on engineered and geological barriers that prevent the nuclear fuel from coming in contact with groundwater, which is the most credible vector to transport the radionuclides into the biosphere. In the safety assessment of a repository, the water intrusion scenario must therefore be investigated. The UO2 matrix contains the majority of the long-lived radiotoxic elements. As the U(IV) form is highly insoluble, the release of the radiotoxic nuclides is largely governed by oxidation of the UO2 matrix into the much more soluble U(VI) form. Oxidation can occur due to the formation of radiolytic oxidants through the ionization or excitation of water molecules in contact with fuel. Oxidation of UO2 pellets using external Am-241 sources was studied under conditions where the UO2 surface and the source were separated by 30 µm water. H2 was shown to suppress the surface oxidation as well as dissolution. This was shown by direct measurement of the surface oxidation state using XPS, as well as through concentration measurements in solution using mass spectrometry (ICP-MS). Oxidative dissolution of 10 and 24 wt% Pu-doped MOX pellets was also studied under Ar and D2 atmospheres. The D2 atmosphere suppressed the uranium dissolution. However, corrosion of the stainless-steel materials present in the autoclave system was also observed. A calculation model was also developed for calculating dose-rates from α-doped UO2 based material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (1)
licentiatavhandling (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (1)
refereegranskat (1)
Författare/redaktör
Hansson, Niklas, 199 ... (2)
Ekberg, Christian, 1 ... (1)
Spahiu, Kastriot, 19 ... (1)
Lärosäte
Chalmers tekniska högskola (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
Teknik (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy