SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hashim Jamal Hisham) srt2:(2020-2024)"

Sökning: WFRF:(Hashim Jamal Hisham) > (2020-2024)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fu, Xi, et al. (författare)
  • Association between indoor microbiome exposure and sick building syndrome (SBS) in junior high schools of Johor Bahru, Malaysia
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 753
  • Tidskriftsartikel (refereegranskat)abstract
    • Sick building syndrome (SBS) is a collection of nonspecific syndromes linked with the built environment. The occurrence of SBS is associated with humidity, ventilation, moulds and microbial compounds exposure. However, no study has reported the association between indoor microbiome and SBS. In this study, 308 students were surveyed for SBS symptoms from 21 classrooms of 7 junior high schools from Johor Bahru, Malaysia, and vacuum dust from floor, desks and chairs was collected. High throughput amplicon sequencing (16S rRNA gene and ITS region) and quantitative PCR were conducted to characterize the absolute concentration of bacteria and fungi taxa. In total, 326 bacterial and 255 fungal genera were detected in dust with large compositional variation among classrooms. Also, half of these samples showed low compositional similarity to microbiome data deposited in the public database. The number of observed OTUs in Gammaproteobacteria was positively associated with SBS (p = 0.004). Eight microbial genera were associated with SBS (p < 0.01). Bacterial genera, Rhodomicrobium, Scytonema and Microcoleus, were protectively (negatively) associated with ocular and throat symptoms and tiredness, and Izhakiella and an unclassified genus from Euzebyaceae were positively associated with the throat and ocular symptoms. Three fungal genera, Polychaeton, Gympopus and an unclassified genus from Microbotryaceae, were mainly positively associated with tiredness. The associations differed with our previous study in microbial compounds (endotoxin and ergosterol) and SBS in the same population, in which nasal and dermal symptoms were affected. A higher indoor relative humidity and visible dampness or mould in classrooms were associated with a higher concentration of potential risk bacteria and a lower concentration of potential protective bacteria (p < 0.01). This is the first study to characterize the SBS-associated microorganisms in the indoor environment, revealing complex interactions between microbiome, SBS symptoms and environmental characteristics.
  •  
3.
  • Fu, Xi, et al. (författare)
  • Associations between environmental characteristics, high-resolution indoor microbiome, metabolome and allergic and non-allergic rhinitis symptoms for junior high school students
  • 2023
  • Ingår i: Environmental Science. - : Royal Society of Chemistry. - 2050-7887 .- 2050-7895. ; 25:4, s. 791-804
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhinitis is one of the most prevalent chronic diseases globally. Microbiome exposure affects the occurrence of rhinitis. However, previous studies did not differentiate allergic rhinitis (AR) and non-allergic rhinitis (NAR) in the microbial association analysis. In this study, we investigate 347 students in 8 junior high schools, Terengganu, Malaysia, who were categorized as healthy (70.9%), AR (13.8%) and NAR (15.3%) based on a self-administered questionnaire and skin prick tests of pollen, pet, mould and house dust mite allergens. Classroom microbial and metabolite exposure in vacuumed dust was characterized by PacBio long-read amplicon sequencing, quantitative PCR and LC-MS-based untargeted metabolomics. Our findings indicate a similar microbial association pattern between AR and NAR. The richness in Gammaproteobacteria was negatively associated with AR and NAR symptoms, whereas total fungal richness was positively associated with AR and NAR symptoms (p < 0.05). Brasilonema bromeliae and Aeromonas enteropelogenes were negatively associated with AR and NAR, and Deinococcus was positively associated with AR and NAR (p < 0.01). Pipecolic acid was protectively associated with AR and NAR symptoms (OR = 0.06 and 0.13, p = 0.009 and 0.045). A neural network analysis showed that B. bromeliae was co-occurring with pipecolic acid, suggesting that the protective role of this species may be mediated by releasing pipecolic acid. Indoor relative humidity and the weight of vacuum dust were associated with AR and NAR, respectively (p < 0.05), but the health effects were mediated by two protective bacterial species, Aliinostoc morphoplasticum and Ilumatobacter fluminis. Overall, our study reported a similar microbial association pattern between AR and NAR and also revealed the complex interactions between microbial species, environmental characteristics, and rhinitis symptoms.
  •  
4.
  • Fu, Xi, et al. (författare)
  • Associations between species-level indoor microbiome, environmental characteristics, and asthma in junior high schools of Terengganu, Malaysia
  • 2022
  • Ingår i: Air quality, atmosphere and health. - : Springer Nature. - 1873-9318 .- 1873-9326. ; 15:6, s. 1043-1055
  • Tidskriftsartikel (refereegranskat)abstract
    • Indoor microbiome exposure is important for asthma development, but current studies characterize the microbiome at the genus or above levels due to technical limitations. We aim to profile bacterial and fungal composition and concentration at the species level and assess its potential health effects. Four hundred sixty-three students from 8 junior high schools in Terengganu, Malaysia, were surveyed for asthma symptoms. Full-length PacBio amplicon sequencing and qPCR were conducted to quantify the absolute microbial concentration in the vacuum dust of the selected classroom. In total, 1358 bacterial and 358 fungal species were characterized, and drastic compositional variation was observed among classrooms. Three-level linear regression analyses revealed that taxa richness in Cyanobacteria were negatively associated with asthma (FDR < 0.001). The absolute concentration of Nocardioides exalbidus was protectively associated with asthma, and four bacteria species were positively associated with asthma (FDR < 0.1). Interestingly, all five species were recently isolated and characterized in Asian countries and never reported to associate with asthma. Indoor NO2 and formaldehyde concentration were associated with the overall bacterial community variation and fungal richness, respectively (p < 0.05). No environmental characteristics were directly associated with asthma, but indoor relative humidity, CO2 concentration, and weight of vacuum dust were associated with the asthma-related species (p < 0.05), suggesting a potential indirect health effect on students. This is the first study to characterize indoor microbiome and asthma-associated microorganisms at the species level, representing a region-specific microbiome exposure pattern in a tropical Asian country.
  •  
5.
  • Fu, Xi, et al. (författare)
  • Associations between the indoor microbiome, environmental characteristics and respiratory infections in junior high school students of Johor Bahru, Malaysia.
  • 2021
  • Ingår i: Environmental Science. - : Royal Society of Chemistry. - 2050-7887 .- 2050-7895. ; 23:8, s. 1171-1181
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogens are commonly present in the human respiratory tract, but symptoms are varied among individuals. The interactions between pathogens, commensal microorganisms and host immune systems are important in shaping the susceptibility, development and severity of respiratory diseases. Compared to the extensive studies on the human microbiota, few studies reported the association between indoor microbiome exposure and respiratory infections. In this study, 308 students from 21 classrooms were randomly selected to survey the occurrence of respiratory infections in junior high schools of Johor Bahru, Malaysia. Vacuum dust was collected from the floor, chairs and desks of these classrooms, and high-throughput amplicon sequencing (16S rRNA and ITS) and quantitative PCR were conducted to characterize the absolute concentration of the indoor microorganisms. Fifteen bacterial genera in the classes Actinobacteria, Alphaproteobacteria, and Cyanobacteria were protectively associated with respiratory infections (p < 0.01), and these bacteria were mainly derived from the outdoor environment. Previous studies also reported that outdoor environmental bacteria were protectively associated with chronic respiratory diseases, such as asthma, but the genera identified were different between acute and chronic respiratory diseases. Four fungal genera from Ascomycota, including Devriesia, Endocarpon, Sarcinomyces and an unclassified genus from Herpotrichillaceae, were protectively associated with respiratory infections (p < 0.01). House dust mite (HDM) allergens and outdoor NO2 concentration were associated with respiratory infections and infection-related microorganisms. A causal mediation analysis revealed that the health effects of HDM and NO2 were partially or fully mediated by the indoor microorganisms. This is the first study to explore the association between environmental characteristics, microbiome exposure and respiratory infections in a public indoor environment, expanding our understanding of the complex interactions among these factors.
  •  
6.
  • Fu, Xi, et al. (författare)
  • Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia
  • 2020
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 138
  • Tidskriftsartikel (refereegranskat)abstract
    • Indoor microbial diversity and composition are suggested to affect the prevalence and severity of asthma by previous home microbiome studies, but no microbiome-health association study has been conducted in a school environment, especially in tropical countries. In this study, we collected floor dust and environmental characteristics from 21 classrooms, and health data related to asthma symptoms from 309 students, in junior high schools in Johor Bahru, Malaysia. The bacterial and fungal composition was characterized by sequencing 16s rRNA gene and internal transcribed spacer (ITS) region, and the absolute microbial concentration was quantified by qPCR. In total, 326 bacterial and 255 fungal genera were characterized. Five bacterial (Sphingobium, Rhodomicrobium, Shimwellia, Solirubrobacter, Pleurocapsa) and two fungal (Torulaspora and Leptosphaeriaceae) taxa were protective for asthma severity. Two bacterial taxa, Izhakiella and Robinsoniella, were positively associated with asthma severity. Several protective bacterial taxa including Rhodomicrobium, Shimwellia and Sphingobium have been reported as protective microbes in previous studies, whereas other taxa were first time reported. Environmental characteristics, such as age of building, size of textile curtain per room volume, occurrence of cockroaches, concentration of house dust mite allergens transferred from homes by the occupants, were involved in shaping the overall microbial community but not asthma-associated taxa; whereas visible dampness and mold, which did not change the overall microbial community for floor dust, was negatively associated with the concentration of protective bacteria Rhodomicrobium (beta =-2.86, p = 0.021) of asthma. The result indicates complex interactions between microbes, environmental characteristics and asthma symptoms. Overall, this is the first indoor microbiome study to characterize the asthma-associated microbes and their environmental determinant in the tropical area, promoting the understanding of microbial exposure and respiratory health in this region.
  •  
7.
  • Fu, Xi, et al. (författare)
  • Microbial Virulence Factors, Antimicrobial Resistance Genes, Metabolites, and Synthetic Chemicals in Cabins of Commercial Aircraft
  • 2023
  • Ingår i: Metabolites. - : MDPI. - 2218-1989 .- 2218-1989. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Passengers are at a higher risk of respiratory infections and chronic diseases due to microbial exposure in airline cabins. However, the presence of virulence factors (VFs), antimicrobial resistance genes (ARGs), metabolites, and chemicals are yet to be studied. To address this gap, we collected dust samples from the cabins of two airlines, one with textile seats (TSC) and one with leather seats (LSC), and analyzed the exposure using shotgun metagenomics and LC/MS. Results showed that the abundances of 17 VFs and 11 risk chemicals were significantly higher in TSC than LSC (p < 0.01). The predominant VFs in TSC were related to adherence, biofilm formation, and immune modulation, mainly derived from facultative pathogens such as Haemophilus parainfluenzae and Streptococcus pneumoniae. The predominant risk chemicals in TSC included pesticides/herbicides (carbofuran, bromacil, and propazine) and detergents (triethanolamine, diethanolamine, and diethyl phthalate). The abundances of these VFs and detergents followed the trend of TSC > LSC > school classrooms (p < 0.01), potentially explaining the higher incidence of infectious and chronic inflammatory diseases in aircraft. The level of ARGs in aircraft was similar to that in school environments. This is the first multi-omic survey in commercial aircraft, highlighting that surface material choice is a potential intervention strategy for improving passenger health.
  •  
8.
  • Isa, Khairul Nizam Mohd, et al. (författare)
  • Fungi composition in settled dust associated with fractional exhaled nitric oxide in school children with asthma
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 853
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi exposure has been significantly linked to respiratory illness. However, numerous fungi taxa that are potentially allergenic still undocumented and leave a barrier to establishing a clear connection between exposure and health risks. This study aimed to evaluate the association of fungi composition in settled dust with fractional exhaled nitric oxide (FeNO) levels among school children with doctor-diagnosed asthma. A cross-sectional study was undertaken among secondary school students in eight schools in the urban area of Hulu Langat, Selangor, Malaysia. A total of 470 school children (aged 14 years old) were randomly selected and their FeNO levels were measured and allergic skin prick tests were conducted. The settled dust samples were collected and analysed by using metagenomic technique to determine the fungi composition. The general linear regression with complex sampling was employed to determine the interrelationship. In total, 2645 fungal operational taxonomic units (OTUs) were characterised from the sequencing process which belongs to Ascomycota (60.7 %), Basidiomycota (36.4 %), Glomeromycota (2.9 %) and Chytridiomycota (0.04 %). The top five mostly abundance in all dust samples were Aspergillus clavatus (27.2 %), followed by Hyphoderma multicystidium (12.2 %), Verrucoconiothyrium prosopidis (9.4 %), Ganoderma tuberculosum (9.2 %), and Heterochaete shearii (7.2 %). The regression results indicated that A. clavatus, Brycekendrickomyces acaciae, Candida parapsilosis, Hazslinszkyomyces aloes, H. multicystidium, H. shearii, Starmerella meliponinorum, V. prosopidis were associated in increased of FeNO levels among the asthmatic group at 0.992 ppb (95 % CI = 0.34-1.68), 2.887 ppb (95 % CI = 2.09-3.76), 0.809 ppb (95 % CI = 0.14-1.49), 0.647 ppb (95 % CI = 0.36-0.94), 1.442 ppb (95 % CI = 0.29-2.61), 1.757 ppb (95 % CI = 0.59-2.87), 1.092 ppb (95 % CI = 0.43-1.75) and 1.088 ppb (95 % CI = 0.51-1.62), respectively. To our knowledge, this is a new finding. The findings pointed out that metagenomics profiling of fungi could enhance our understanding of a complex interrelation between rare and unculturable fungi with airway inflammation.
  •  
9.
  • Isa, Khairul Nizam Mohd, et al. (författare)
  • Metagenomic characterization of indoor dust fungal associated with allergy and lung inflammation among school children
  • 2021
  • Ingår i: Ecotoxicology and Environmental Safety. - : Elsevier. - 0147-6513 .- 1090-2414. ; 221
  • Tidskriftsartikel (refereegranskat)abstract
    • The exposure of school children to indoor air pollutants has increased allergy and respiratory diseases. The objective of this study were to determine the toxicodynamic interaction of indoor pollutants exposure, biological and chemical with expression of adhesion molecules on eosinophil and neutrophil. A self-administered questionnaire, allergy skin test, and fractional exhaled nitric oxide (FeNO) analyser were used to collect information on health status, sensitization to allergens and respiratory inflammation, respectively among school children at age of 14 years. The sputum induced were analysed to determine the expression of CD11b, CD35, CD63 and CD66b on eosinophil and neutrophil by using flow cytometry technique. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde, temperature, and relative humidity were measured inside the classrooms. The fungal DNA were extracted from settled dust collected from classrooms and evaluated using metagenomic techniques. We applied chemometric and regression in statistical analysis. A total of 1869 unique of operational taxonomic units (OTUs) of fungi were identified with dominated at genus level by Aspergillus (15.8%), Verrucoconiothyrium (5.5%), and Ganoderma (4.6%). Chemometric and regression results revealed that relative abundance of T. asahii were associated with down regulation of CD66b expressed on eosinophil, and elevation of FeNO levels in predicting asthmatic children with model accuracy of 63.6%. Meanwhile, upregulation of CD11b expressed on eosinophil were associated with relative abundance of A. clavatus and regulated by PM2.5. There were significant association of P. bandonii with upregulation of CD63 expressed on neutrophil and exposure to NO2. Our findings indicate that exposure to PM2.5, NO2, T. asahii, P.bandonii and A.clavatus are likely interrelated with upregulation of activation and degranulation markers on both eosinophil and neutrophil.
  •  
10.
  • Isa, Khairul Nizam Mohd, et al. (författare)
  • The Impact of Exposure to Indoor Pollutants on Allergy and Lung Inflammation among School Children in Selangor, Malaysia : An Evaluation Using Factor Analysis
  • 2020
  • Ingår i: Aerosol and Air Quality Research. - : Taiwan Association for Aerosol Research. - 1680-8584 .- 2071-1409. ; 20:11, s. 2371-2383
  • Tidskriftsartikel (refereegranskat)abstract
    • A cross-sectional study of 470, 14-year-old students from 8 secondary schools located in sub-urban and urban areas in Hulu Langat district, Selangor, Malaysia was undertaken to determine the impact of atmospheric indoor air pollutants on atopy, asthma, respiratory symptoms and lung inflammation among school children. The students were surveyed using ISAAC and ECRHS questionnaires, their FeNO levels were measured and allergic skin prick tests were conducted. Active and passive sampling was used to measure the classroom indoor air concentration of NO2, CO2, formaldehyde, PM10, PM2.5, temperature and relative humidity. Linear mixed model, two-levels multiple logistic regression, PCA and SPC were applied to determine the complex relationship between respiratory symptoms, personal factors, FeNO levels and atmospheric indoor pollutants. 20.6% of students reported daytime breathlessness and 55.5% reported having rhinitis in the last 12 months. Atopy was prevalent in 57.7% of students, with predominant sensitization to Derp1 (51.9%) and Derf1 (47.9%) among doctor's diagnosed asthmatic students. Indoor air pollutants in urban area schools were significantly higher than those in sub-urban areas (p < 0.001). There was a significant association between exposure to PM10 (OR = 2.66, 95% CI: 1.33-5.30) with skin allergy symptoms in the past 12 months. The PCA suggested that the most prominent factor associated with increasing FeNO levels was PM10, with 73.5% of the variation. SPC predicted the pattern of FeNO at an upper confidence limit (UCL) of 104.21 ppb with increasing PM10 concentration in the classroom (UCL = 40.23 mu g m(-3)). Exposure to PM10 and PM2.5 significantly influenced the inflammation of the school children's lungs. Moreover, there were associations between self-reported wheezing, daytime and nocturnal attack of breathlessness with doctor's diagnosed asthma among school children.
  •  
11.
  • Ma'pol, Aminnuddin, et al. (författare)
  • FeNO level and allergy status among school children in Terengganu, Malaysia
  • 2020
  • Ingår i: Journal of Asthma. - : Informa UK Limited. - 0277-0903 .- 1532-4303. ; 57:8, s. 842-849
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Almost one third of the world population suffers from allergic conditions. Respiratory symptoms are common in Malaysian children but there are few studies on fractional exhaled nitric oxide (FeNO), inclusive of field clinical test for asthma among children in Malaysia. The aim was to provide insight on factors related to level of FeNO among students in Terengganu, Malaysia. Methods: In total, 487 randomly selected students from eight secondary schools participated (13-14 years old). A Standardized questionnaire was used to obtained information on doctors' diagnosed asthma, current asthma and respiratory symptoms. FeNO measurement and skin prick test (SPT to common allergen) were conducted. Results: The geometric mean FeNO was 16.7 ppb. Totally, 38.4% of students had elevated FeNO level (>20 ppb) and 40.3% had had positive SPT to house dust mites allergens (HDM), Dermatophagoides pteronyssinus (Der p 1), Dermatophagoides farinae (Der f 1) or Felis domisticus (cat). Male gender, height, parental history of allergy, self-reported allergy, and atopy were associated with FeNO. In particular, a combination of sensitization to HDM or cat and elevated FeNO were associated with doctor-diagnosed asthma and self-reported allergy to food, pollen and cat. Conclusion: Asthma, respiratory symptoms and sensitization to HDM and cat are common among students and presence of elevated FeNO levels indicate ongoing airway inflammation.
  •  
12.
  • Norbäck, Dan, et al. (författare)
  • Asthma symptoms and respiratory infections in Malaysian students : associations with ethnicity and chemical exposure at home and school
  • 2021
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 197
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known on respiratory effects of indoor chemicals in the tropics. We investigated associations between asthma and respiratory infections in Malaysian students and chemical exposure at home and at school. Moreover, we investigated differences in home environment between the three main ethnic groups in Malaysia (Malay, Chinese, Indian). Totally, 462 students from 8 junior high schools in Johor Bahru participated (96% participation rate). The students answered a questionnaire on health and home environment. Climate, carbon dioxide (CO2), volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) were measured inside and outside the schools. Multilevel logistic regression was applied to study associations between exposure and health. Totally 4.8% were smokers, 10.3% had wheeze, 9.3% current asthma, and had 18.8% any respiratory infection in the past 3 months. Malay students had more dampness or mould (p < 0.001), more environmental tobacco smoke (ETS) (p < 0.001) and more cats (p < 0.001) at home as compared to Chinese or Indian students. Wheeze was associated with ethnicity (p = 0.02; lower in Indian), atopy (p = 0.002), current smoking (p = 0.02) and recent indoor painting at home (p = 0.03). Current asthma was associated with ethnicity (p = 0.001; lower in Chinese) and para-dichlorobenzene in classroom air (p = 0.008). Respiratory infections were related to atopy (p = 0.002), ethylbenzene (p = 0.02) and para-dichlorobenzene (p = 0.01) in classroom air. Para-dichlorobenzene is used in Asia against insects. In conclusion, chemical emissions from recent indoor painting at home can increase the risk of wheeze. In schools, para-dichlorobenzene can increase the risk of current asthma and respiratory infections while ethylbenzene can increase the risk of respiratory infections.
  •  
13.
  • Norbäck, Dan, et al. (författare)
  • Fractional exhaled nitric oxide (FeNO) and respiratory symptoms in junior high school students in Penang, Malaysia: the role of household exposure
  • 2024
  • Ingår i: International Journal of Environmental Health Research. - : Taylor & Francis. - 0960-3123 .- 1369-1619. ; 34:1, s. 213-224
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied associations between fractional exhaled nitric oxide (FeNO), health and household exposure among school children (N = 348) in Penang, Malaysia. Multiple logistic regression and linear mixed models were applied. Overall, 46.0% had elevated FeNO (>20 ppb) and 10.6% diagnosed asthma. Male gender (p = 0.002), parental asthma or allergy (p = 0.047), cat allergy (p = 0.009) and seafood allergy (p < 0.001), diagnosed asthma (p = 0.001), wheeze (p = 0.001), ocular symptoms (p = 0.001), rhinitis (p = 0.002) and respiratory infections (p = 0.004) were all associated with FeNO. Students exposed to ETS had lower FeNO (p = 0.05). Dampness and mould was associated with wheeze (p = 0.038), especially in wooden homes (interaction p = 0.042) and among students with elevated FeNO (interaction p = 0.024). Cat keeping increased rhinitis (p = 0.041) and respiratory infections (p = 0.008) and modified the dampness associations. In conclusion, FeNO can be associated with ocular and respiratory symptoms. Elevated FeNO, cat keeping and a wooden house can enhance the risk of wheeze when exposed to dampness and mould.
  •  
14.
  • Sun, Yu, et al. (författare)
  • Indoor microbiome, microbial and plant metabolites, chemical compounds, and asthma symptoms in junior high school students : a multicentre association study in Malaysia
  • 2022
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 60:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Indoor microbial exposure is associated with asthma, but the health effects of indoor metabolites and chemicals have not been comprehensively assessed.Methods We collected classroom dust from 24 junior high schools in three geographically distanced areas in Malaysia (Johor Bahru, Terengganu and Penang), and conducted culture-independent high-throughput microbiome and untargeted metabolomics/chemical profiling.Results 1290 students were surveyed for asthma symptoms (wheeze). In each centre, we found significant variation in the prevalence of wheeze among schools, which could be explained by personal characteristics and air pollutants. Large-scale microbial variations were observed between the three centres; the potential protective bacteria were mainly from phyla Actinobacteria in Johor Bahru, Cyanobacteria in Terengganu and Proteobacteria in Penang. In total, 2633 metabolites and chemicals were characterised. Many metabolites were enriched in low-wheeze schools, including plant secondary metabolites flavonoids/isoflavonoids (isoliquiritigenin, formononetin, astragalin), indole and derivatives (indole, serotonin, 1H-indole-3-carboxaldehyde), and others (biotin, chavicol). A neural network analysis showed that the indole derivatives were co-occurring with the potential protective microbial taxa, including Actinomycetospora, Fischerella and Truepera, suggesting these microorganisms may pose health effects by releasing indole metabolites. A few synthetic chemicals were enriched in high-wheeze schools, including pesticides (2(3H)-benzothiazolethione), fragrances (2-aminobenzoic acid, isovaleric acid), detergents and plastics (phthalic acid), and industrial materials (4,4-sulfonyldiphenol).Conclusions This is the first association study between high-throughput indoor chemical profiling and asthma symptoms. The consistent results from the three centres indicate that indoor metabolites/chemicals could be a better indicator than the indoor microbiome for environmental and health assessments, providing new insights for asthma prediction, prevention and control.
  •  
15.
  • Adams, Nicholas, et al. (författare)
  • El Niño Southern Oscillation, monsoon anomaly, and childhood diarrheal disease morbidity in Nepal
  • 2022
  • Ingår i: PNAS Nexus. - : Oxford University Press (OUP). - 2752-6542. ; 1:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is adversely impacting the burden of diarrheal diseases. Despite significant reduction in global prevalence, diarrheal disease remains a leading cause of morbidity and mortality among young children in low- and middle-income countries. Previous studies have shown that diarrheal disease is associated with meteorological conditions but the role of large-scale climate phenomena such as El Niño-Southern Oscillation (ENSO) and monsoon anomaly is less understood. We obtained 13 years (2002–2014) of diarrheal disease data from Nepal and investigated how the disease rate is associated with phases of ENSO (El Niño, La Niña, vs. ENSO neutral) monsoon rainfall anomaly (below normal, above normal, vs. normal), and changes in timing of monsoon onset, and withdrawal (early, late, vs. normal). Monsoon season was associated with a 21% increase in diarrheal disease rates (Incident Rate Ratios [IRR]: 1.21; 95% CI: 1.16–1.27). El Niño was associated with an 8% reduction in risk while the La Niña was associated with a 32% increase in under-5 diarrheal disease rates. Likewise, higher-than-normal monsoon rainfall was associated with increased rates of diarrheal disease, with considerably higher rates observed in the mountain region (IRR 1.51, 95% CI: 1.19–1.92). Our findings suggest that under-5 diarrheal disease burden in Nepal is significantly influenced by ENSO and changes in seasonal monsoon dynamics. Since both ENSO phases and monsoon can be predicted with considerably longer lead time compared to weather, our findings will pave the way for the development of more effective early warning systems for climate sensitive infectious diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy