SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hayat Tasawar) "

Sökning: WFRF:(Hayat Tasawar)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Zhan Ming, et al. (författare)
  • Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditional consumption-based greenhouse gas emissions accounting attributed the gap between consumption-based and production-based emissions to international trade. Yet few attempts have analyzed the temporal deviation between current emissions and future consumption, which can be explained through changes in capital stock. Here we develop a dynamic model to incorporate capital stock change in consumption-based accounting. The new model is applied using global data for 1995–2009. Our results show that global emissions embodied in consumption determined by the new model are smaller than those obtained from the traditional model. The emissions embodied in global capital stock increased steadily during the period. However, capital plays very different roles in shaping consumption-based emissions for economies with different development characteristics. As a result, the dynamic model yields similar consumption-based emissions estimation for many developed countries comparing with the traditional model, but it highlights the dynamics of fast-developing countries.
  •  
2.
  • dell'Isola, Francesco, et al. (författare)
  • Advances in pantographic structures : design, manufacturing, models, experiments and image analyses
  • 2019
  • Ingår i: Continuum Mechanics and Thermodynamics. - : Springer. - 0935-1175 .- 1432-0959. ; 31:4, s. 1231-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last decade, the exotic properties of pantographic metamaterials have been investigated and different mathematical models (both discrete or continuous) have been introduced. In a previous publication, a large part of the already existing literature about pantographic metamaterials has been presented. In this paper, we give some details about the next generation of research in this field. We present an organic scheme of the whole process of design, fabrication, experiments, models and image analyses.
  •  
3.
  • Yu, Shujun, et al. (författare)
  • Macroscopic, Spectroscopic, and Theoretical Investigation for the Interaction of Phenol and Naphthol on Reduced Graphene Oxide
  • 2017
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 51:6, s. 3278-3286
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction of phenol and naphthol with reduced graphene oxide (rGO), and their competitive behavior on rGO were examined by batch experiments, spectroscopic analysis and theoretical calculations. The batch sorption showed that the removal percentage of phenol or naphthol on rGO in bisolute systems was significantly lower than those of phenol or naphthol in single-solute systems. However, the overall sorption capacity of rGO in bisolute system was higher than single-solute system, indicating that the rGO was a very suitable material for the simultaneous elimination of organic pollutants from aqueous solutions. The interaction mechanism was mainly pi-pi interactions and hydrogen bonds, which was evidenced by FTIR, Raman and theoretical calculation. FTIR and Raman showed that a blue shift of C=C and -OH stretching modes and the enhanced intensity ratios of I-D/I-G after phenols sorption. The theoretical calculation indicated that the total hydrogen bond numbers, diffusion constant and solvent accessible surface area of naphthol were higher than those of phenol, indicating higher sorption affinity of rGO for naphthol as compared to phenol. These findings were valuable for elucidating the interaction mechanisms between phenols and graphene-based materials, and provided an essential start in simultaneous removal of organics from wastewater.
  •  
4.
  • Yu, Shujun, et al. (författare)
  • Spectroscopic and theoretical studies on the counterion effect of Cu(II) ion and graphene oxide interaction with titanium dioxide
  • 2016
  • Ingår i: ENVIRONMENTAL SCIENCE-NANO. - : Royal Society of Chemistry. - 2051-8153 .- 2051-8161. ; 3:6, s. 1361-1368
  • Tidskriftsartikel (refereegranskat)abstract
    • With the widespread use of graphene oxide (GO), it is inevitable that part of GO is released into the environment and co-exist with heavy metal ions as contaminants and is likely to be co-adsorbed on minerals and oxides. This study, for the first time, demonstrates the individual and mutual removal mechanism of GO and Cu(II) on titanium dioxide (TiO2) by batch experiments, spectroscopic analysis and density functional theory (DFT) computations. Electrostatic interaction and hydrogen bonding are the dominant modes of GO sorption onto TiO2, and the interaction of Cu(II) with TiO2 is mainly dominated by inner-sphere surface complexation. The presence of Cu(II) enhances GO coagulation on TiO2 and vice versa. The experimental results are further verified by DFT sorption energy (Es) calculations in the order (TiO2-GO)-Cu > TiO2-GO for GO interaction and (TiO2-GO)-Cu > TiO2-Cu for Cu(II) interaction. The mutual interaction is favorable for the simultaneous removal of GO and heavy metal ions by surface complexation between Cu(II) and oxygen-containing functional groups. These findings might facilitate better understanding of the co-removal behavior of carbon nanomaterials and heavy metal ions on oxides, which is crucial to decreasing the environmental toxicity of pollutants in the natural environment.
  •  
5.
  • Zou, Yidong, et al. (författare)
  • beta-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution : experimental and theoretical calculation study
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 4:37, s. 14170-14179
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel beta-cyclodextrin modified, multifunctional, layer-by-layer graphitic carbon nitride (g-C3N4/beta-CD) was successfully synthesized and applied as an effective adsorbent for the removal of methyl orange (MO) and Pb(II) from aqueous solutions under various environmental conditions (e.g., solution pH, solid content, contact time and temperature). The kinetic results indicated that the adsorption was dominated by chemisorption, and the higher adsorption capacity of g-C3N4/beta-CD was attributed to it having more oxygen-containing functional groups than g-C3N4. The Langmuir, Freundlich and Sips models were applied to simulate the adsorption isotherms of MO and Pb(II), and the results demonstrated that the adsorption of MO was attributed to multilayer adsorption, while the coverage adsorption of Pb(II) on the g-C3N4/beta-CD was monolayer adsorption. The thermodynamic parameters showed that the adsorption of both MO and Pb(II) was spontaneous and endothermic. The DFT calculations further evidenced the surface complexation and electrostatic interaction of Pb(II) on the g-C3N4 and g-C3N4/beta-CD, whereas, the interaction of MO with g-C3N4 and g-C3N4/beta-CD was mainly attributed to hydrogen bonds and strong pi-pi interactions. The results demonstrated that g-C3N4/beta-CD is a promising material for the efficient removal of organic and inorganic pollutants in environmental pollution remediation.
  •  
6.
  • Zou, Yidong, et al. (författare)
  • Glycerol-Modified Binary Layered Double Hydroxide Nanocomposites for Uranium Immobilization via Extended X-ray Absorption Fine Structure Technique and Density Functional Theory Calculation
  • 2017
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : AMER CHEMICAL SOC. - 2168-0485. ; 5:4, s. 3583-3595
  • Tidskriftsartikel (refereegranskat)abstract
    • Novel, efficient, glycerol-modified nanoscale layered double hydroxides (rods Ca/Al LDH-Gl and flocculent Ni/Al LDH-Gl) were successfully synthesized by a simple one-step hydrothermal synthesis route and showed excellent adsorption capacities for U(VI) from aqueous solutions under various environmental conditions. The advanced spectroscopy analysis confirmed the existence of abundant oxygen-containing functional groups (e.g., C-O, O-C=O, and C=O) on the surfaces of Ca/AI LDH-Gl and Ni/Al LDH-Gl, which could provide enough free active sites for the binding of U(VI). The maximum adsorption capacities of Macro-application (Environment U(VI) calculated from the Sips model were 266.5 mg.g(-1) for Ca/Al LDH-Gl and 142.3 mg.g(-1) for Ni/Al LDH-Gl at 298.15 K, and the higher adsorption capacity of Ca/Al LDH-Gl might be due to more functional groups and abundant high-activity "Ca-O" groups. Macroscopic experiments proved that the interaction of U(VI) on Ca/Al LDH-Gl and Ni/Al LDH-Gl was due to surface complexation and electrostatic interactions. The extended Xray absorption fine structure analysis confirmed that U(IV) did not transformation to U(VI) on solid particles, and stable inner sphere complexes were not formed by reduction interaction but by chemical adsorption. The density functional theory (DFT) calculations further evidenced that the higher adsorption energies (i.e., E-ad = 4.00 eV for Ca/AI LDH-Gl-UO22+ and E-ad = 2.43 eV for Ca/Al LDH-Gl-UO2CO3) were mainly attributed to stronger hydrogen bonds and electrostatic interactions. The superior immobilization performance of Ca/AI LDH-Gl supports a potential strategy for decontamination of UO22+ from wastewater, and it may provide new insights for the efficient removal of radionuclides in environmental pollution cleanup.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy