SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haynes D) srt2:(2010-2014)"

Sökning: WFRF:(Haynes D) > (2010-2014)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • De Jong, R. S., et al. (författare)
  • 4MOST - 4-metre multi-object spectroscopic telescope
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819491473 ; , s. 84460T-
  • Konferensbidrag (refereegranskat)abstract
    • The 4MOST consortium is currently halfway through a Conceptual Design study for ESO with the aim to develop a wide-field (>3 square degree, goal >5 square degree), high-multiplex (>1500 fibres, goal 3000 fibres) spectroscopic survey facility for an ESO 4m-class telescope (VISTA). 4MOST will run permanently on the telescope to perform a 5 year public survey yielding more than 20 million spectra at resolution R∼5000 (λ=390-1000 nm) and more than 2 million spectra at R∼20,000 (395-456.5 nm & 587-673 nm). The 4MOST design is especially intended to complement three key all-sky, space-based observatories of prime European interest: Gaia, eROSITA and Euclid. Initial design and performance estimates for the wide-field corrector concepts are presented. Two fibre positioner concepts are being considered for 4MOST. The first one is a Phi-Theta system similar to ones used on existing and planned facilities. The second one is a new R-Theta concept with large patrol area. Both positioner concepts effectively address the issues of fibre focus and pupil pointing. The 4MOST spectrographs are fixed configuration two-arm spectrographs, with dedicated spectrographs for the high- and low-resolution fibres. A full facility simulator is being developed to guide trade-off decisions regarding the optimal field-of-view, number of fibres needed, and the relative fraction of high-to-low resolution fibres. The simulator takes mock catalogues with template spectra from Design Reference Surveys as starting point, calculates the output spectra based on a throughput simulator, assigns targets to fibres based on the capabilities of the fibre positioner designs, and calculates the required survey time by tiling the fields on the sky. The 4MOST consortium aims to deliver the full 4MOST facility by the end of 2018 and start delivering high-level data products for both consortium and ESO community targets a year later with yearly increments.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Schnurr, Olivier, et al. (författare)
  • From space to specs : Requirements for 4MOST
  • 2014
  • Ingår i: Modeling, Systems Engineering, and Project Management for Astronomy VI. - : SPIE. - 1996-756X .- 0277-786X. - 9780819496188 ; 9150
  • Konferensbidrag (refereegranskat)abstract
    • 4MOST,1 the 4m Multi-Object spectrographic Survey Telescope, is an upcoming optical, fiber-fed, MOS facility for the VISTA telescope at ESO's Cero Paranal Observatory (Chile). The preliminary design of 4MOST features 2,400 fibers split into a low-resolution (1,600 fibers, 390-900 nm, R > 5; 000) and a high-resolution channel (800 fibers, three arms, ∼20-25 nm coverage each, R > 18; 000) with an Echidna-style positioner, and covering a hexagonal field of view of ∼4.1 sqdeg. 4MOST's main science goals encompass massive (tens of millions of spectra), all-Southern sky (> 18; 000 sqdeg) surveys following up both the Gaia (optical) and eROSITA (X-ray) space missions, plus cosmological science that complements missions such as e.g. Euclid. In a novel approach, observations of these science cases, which are very different from another, are to be carried out in parallel (i.e., simultaneously); thus, from the very different science requirements, key user requirements have to be identified, stringently formulated, and condensed into a coherent set of system specifications. Clearly, identifying common grounds and thereby significantly reducing complexity in both the formulated requirements and the final 4MOST facility, is a very challenging task. In this paper, we will present science and user requirements, and how the latter flow down from the former, and eventually further down to the system-specification level. Special emphasis will be put on the identification of key requirements and their validation and verification protocols, so that significant trade-offs can be done as early on in the design phase as possible, with as little impact as possible on the science capabilities upstream.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy