SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hedman Daniel 1989 ) srt2:(2019)"

Sökning: WFRF:(Hedman Daniel 1989 ) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hedman, Daniel, 1989- (författare)
  • Single-Walled Carbon Nanotubes : A theoretical study of stability, growth and properties
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Since their discovery over 25 years ago, scientists have explored the remarkable properties of single-walled carbon nanotubes (SWCNTs) for use in high-tech materials and devices, such as strong light-weight composites, efficient electrical wires, supercapacitors and high-speed transistors. However, the mass production of such materials and devices is still limited by the capability of producing uniform high-quality SWCNTs. The properties of a SWCNT are determined by the orientation of the hexagonal grid of carbon atoms constituting the tube wall, this is known as the chirality of the SWCNT.Today's large-scale methods for producing SWCNTs, commonly known as growth, give products with a large spread of different chiralities. A mixture of chiralities give products with a mixture of different properties. This is one of the major obstacles preventing large-scale use of SWCNTs in future materials and devices. The goal is to achieve growth where the resulting product is uniform, meaning that all SWCNTs have the same chirality, a process termed chirality-specific growth. To achieve this requires a deep fundamental understanding of how SWCNTs grow, both from an experimental and a theoretical perspective.This work focuses on theoretical studies of SWCNTs and their growth mechanisms. With the goal of achieving a deeper understanding of how chirality arises during growth and how to control it. Thus, taking us ever closer to the ultimate goal of achieving chirality-specific growth. In this thesis, an introduction to the field is given and the current research questions are stated. Followed by chapters on carbon nanomaterials, SWCNTs and computational physics. A review of the state-of-the-art experimental and theoretical works relating to chirality specific growth is also given.The results presented in this thesis are obtained using first principle density functional theory calculations. Results show that the stability of short SWCNT-fragments can be linked to the products observed in experiments. In 84% of the investigate cases, the chirality of experimental products matches the chirality of the most stable SWCNT-fragments (within 0.2 eV). Further studies also reveal a previously unknown link between the stability of SWCNT-fragments and their length. Calculations show that at specific lengths the most stable chirality changes. Thus, introducing the concept of a switching length for SWCNT stabilities.This newly found property of SWCNTs is used in combination with previously published works to create a state-of-the-art analytical model to investigate growth of SWCNTs any temperature. Results from the model show that the most stable chirality obtained is dependent on the diameter, length of the SWCNT, the growth temperature and the composition of the catalyst. Finally, a detailed study on the ability of catalyst metals to sustain SWCNT growth points to Pt as an interesting candidate to achieve growth of rarely seen chiralities. The new knowledge gained from these results takes us even closer to achieving chirality-specific growth.
  •  
2.
  • Zhang, Hanzhu, 1991-, et al. (författare)
  • A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite
  • 2019
  • Ingår i: Dalton Transactions. - : Royal Society of Medicine Press. - 1477-9226 .- 1477-9234. ; 48:16, s. 5161-5167
  • Tidskriftsartikel (refereegranskat)abstract
    • A multicomponent composite of refractory carbides, B4C, HfC, Mo2C, TaC, TiC and SiC, of rhombohedral, face-centered cubic (FCC) and hexagonal crystal structures is reported to form a single phase B4(HfMo2TaTi)C ceramic with SiC. The independent diffusion of the metal and nonmetal atoms led to a unique hexagonal lattice structure of the B4(HfMo2TaTi)C ceramic with alternating layers of metal atoms and C/B atoms. In addition, the classical differences in the crystal structures and lattice parameters among the utilized carbides were overcome. Electron microscopy, X-ray diffraction and calculations using density functional theory (DFT) confirmed the formation of a single phase B4(HfMo2TaTi)C ceramic with a hexagonal close-packed (HCP) crystal structure. The DFT based crystal structure prediction suggests that the metal atoms of Hf, Mo, Ta and Ti are distributed on the (0001) plane in the HCP lattice, while the carbon/boron atoms form hexagonal 2D grids on the (0002) plane in the HCP unit cell. The nanoindentation of the high-entropy phase showed hardness values of 35 GPa compared to the theoretical hardness value estimated based on the rule of mixtures (23 GPa). The higher hardness was contributed by the solid solution strengthening effect in the multicomponent hexagonal structure. The addition of SiC as the secondary phase in the sintered material tailored the microstructure of the composite and offered oxidation resistance to the high-entropy ceramic composite at high temperatures.
  •  
3.
  • Zhang, Hanzhu, 1991-, et al. (författare)
  • High Entropy B2(HfMoTaTi)C and SiC Ceramic Composite
  • 2019
  • Ingår i: XVI Conference and Exhibition of the European Ceramic Society. - : European Ceramic Society (ECerS). ; , s. 338-338
  • Konferensbidrag (refereegranskat)abstract
    • Refractory carbides HfC, Mo2C, TiC, TaC, B4C, and SiC were mixed with a molar ratio of 2:1:2:2:1:2 to fabricate multicomponent ceramic composite by pulsed current processing (PCP). From the starting materials that consist of face-centered cubic (FCC), hexagonal and rhombohedral crystal structures, the investigated carbide system is reported to form a single phase B2(HfMoTaTi)C high-entropy ceramic (HEC) with SiC. The HEC phase contains uniform distribution of constitutional elements Hf, Mo, Ta, Ti, B and C, according to Energy dispersive X-ray spectroscopy (EDS) and wavelength dispersive X-ray spectroscopy (WDS) results.The fabricated HEC phase displays a hexagonal close-packed (HCP) crystal structure, with a high average lattice distortion of 8.26% (see Figure). The HCP structure was observed by X-ray diffraction and selected area diffraction in transmission electron microscopy (TEM). Density-functional theory (DFT) optimization suggested that the hexagonal close-packed (HCP) crystal structure has alternating layers of metal atoms and carbon/boron atoms, i.e. metal atoms of Hf, Mo, Ta and Ti were distributed on the (0001) plane in the HCP lattice, while the carbon/boron atoms formed hexagonal 2D grids on the (0002) plane in the HCP unit cell. Despite of the vast differences in the crystal structures and lattice parameters among the utilized carbides, the formation of the unique hexagonal lattice structure of B2(HfMoTaTi)C can be a result of independent diffusion of the metal and nonmetal atoms. The sintered HEC ceramic composite exhibits excellent oxidation resistance at mediate temperature, 900 ºC for 50h, and elevated temperature, 2000 ºC for 20 s. Nanoindentation test shows that the HEC phase has a high hardness of 35 GPa. The remarkable improvement compared to the theoretical hardness value estimated based on the rule of mixtures (23 GPa) was contributed by the severe lattice distortion in the HCP structure. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy