SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hedtjärn Maj 1973) srt2:(2006)"

Sökning: WFRF:(Hedtjärn Maj 1973) > (2006)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eklind, Saskia, et al. (författare)
  • Effect of lipopolysaccharide on global gene expression in the immature rat brain
  • 2006
  • Ingår i: Pediatr Res. ; 60:2, s. 161-8
  • Tidskriftsartikel (refereegranskat)abstract
    • To improve the understanding of the molecular mechanisms whereby lipopolysaccharide (LPS) affects the immature brain, global gene expression following LPS exposure was investigated in neonatal rats. Brains (n = 5/time point) were sampled 2, 6, and 72 h after LPS and compared with age-matched controls. The mRNA from each brain was analyzed separately on Affymextrix GeneChip Rat Expression Set 230. The number of genes regulated after LPS were 847 at 2 h, 1564 at 6 h, and 1546 genes at 72 h. Gene ontology analysis demonstrated that, at both 2 and 6 h after LPS, genes associated with protein metabolism, response to external stimuli and stress (immune and inflammatory response, chemotaxis) and cell death were overrepresented. At 72 h, the most strongly regulated genes belonged to secretion of neurotransmitters, transport, synaptic transmission, cell migration, and neurogenesis. Several pathways associated with cell death/survival were identified (caspase-tumor necrosis factor alpha [TNF-alpha]-, p53-, and Akt/phosphatidylinositol-3-kinase (PI3 K)-dependent mechanisms). Caspase-3 activity increased and phosphorylation of Akt decreased 8 h after peripheral LPS exposure. These results show a complex cerebral response to peripheral LPS exposure. In addition to the inflammatory response, a significant number of cell death-associated genes were identified, which may contribute to increased vulnerability of the immature brain to hypoxia-ischemia (HI) following LPS exposure.
  •  
2.
  • Lund, Sören, et al. (författare)
  • The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions
  • 2006
  • Ingår i: J Neuroimmunol. ; 180:1-2, s. 71-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Overall, the inflammatory potential of lipopolysaccharide (LPS) in vitro and in vivo was investigated using different omics technologies. We investigated the hippocampal response to intracerebroventricular (i.c.v) LPS in vivo, at both the transcriptional and protein level. Here, a time course analysis of interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) showed a sharp peak at 4 h and a return to baseline at 16 h. The expression of inflammatory mediators was not temporally correlated with expression of the microglia marker F4/80, which did not peak until 2 days after LPS injection. Of 480 inflammation-related genes present on a microarray, 29 transcripts were robustly up-regulated and 90% of them were also detected in LPS stimulated primary microglia (PM) cultures. Further in vitro to in vivo comparison showed that the counter regulation response observed in vivo was less evident in vitro, as transcript levels in PM decreased relatively little over 16 h. This apparent deficiency of homeostatic control of the innate immune response in cultures may also explain why a group of genes comprising tnf receptor associated factor-1, endothelin-1 and schlafen-1 were regulated strongly in vitro, but not in vivo. When the overall LPS-induced transcriptional response of PM was examined on a large Affymetrix chip, chemokines and cytokines constituted the most strongly regulated and largest groups. Interesting new microglia markers included interferon-induced protein with tetratricopeptide repeat (ifit), immune responsive gene-1 (irg-1) and thymidylate kinase family LPS-inducible member (tyki). The regulation of the former two was confirmed on the protein level in a proteomics study. Furthermore, conspicuous regulation of several gene clusters was identified, for instance that of genes pertaining to the extra-cellular matrix and enzymatic regulation thereof. Although most inflammatory genes induced in vitro were transferable to our in vivo model, the observed discrepancy for some genes potentially represents regulatory factors present in the central nervous system (CNS) but not in vitro.
  •  
3.
  • Wang, Xiaoyang, 1965, et al. (författare)
  • Disruption of interleukin-18, but not interleukin-1, increases vulnerability to preterm delivery and fetal mortality after intrauterine inflammation
  • 2006
  • Ingår i: Am J Pathol. - : Elsevier BV. ; 169:3, s. 967-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Preterm birth is a major contributor of adverse perinatal outcome. Clinical data suggest that an inflammatory response is important in the process leading to preterm labor. By using a recently introduced mouse model of localized intrauterine lipopolysaccharide-induced inflammation, the effect of interleukin (IL)-18 gene disruption and/or IL-18 neutralization as well as combined IL-1alpha/beta gene disruption on inflammation-induced fetal loss was investigated. The frequency of preterm fetal loss was significantly higher in IL-18 knockout mice (58.9%) and in mice administered IL-18-binding protein (59.7%) compared to wild-type controls (34.7%). The rate of fetal loss was not affected by IL-1alpha/beta gene deficiency (38.7%). Decreased IL-18 protein expression combined with elevated IL-12 protein expression in uterine tissue of IL-18 knockout mice and IL-18-binding protein-treated animals was noticed. These data demonstrate that preterm pregnancy loss in response to intrauterine inflammation was enhanced by disruption of the IL-18 gene and/or IL-18 neutralization, events that may relate to exaggerated Th1 responses because of an increased IL-12/IL-18 ratio.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy