SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heldin J.) srt2:(2015-2019)"

Sökning: WFRF:(Heldin J.) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thijssen, Victor L. J. L., et al. (författare)
  • Targeting PDGF-mediated recruitment of pericytes blocks vascular mimicry and tumor growth
  • 2018
  • Ingår i: Journal of Pathology. - : Wiley. - 0022-3417 .- 1096-9896. ; 246:4, s. 447-458
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggressive tumor cells can adopt an endothelial cell-like phenotype and contribute to the formation of a tumor vasculature, independent of tumor angiogenesis. This adoptive mechanism is referred to as vascular mimicry and it is associated with poor survival in cancer patients. To what extent tumor cells capable of vascular mimicry phenocopy the angiogenic cascade is still poorly explored. Here, we identify pericytes as important players in vascular mimicry. We found that pericytes are recruited by vascular mimicry-positive tumor cells in order to facilitate sprouting and to provide structural support of the vascular-like networks. The pericyte recruitment is mediated through platelet-derived growth factor (PDGF)-B. Consequently, preventing PDGF-B signaling by blocking the PDGF receptors with either the small tyrosine kinase inhibitor imatinib or blocking antibodies inhibits vascular mimicry and tumor growth. Collectively, the current study identifies an important role for pericytes in the formation of vascular-like structures by tumor cells. Moreover, the mechanism that controls the pericyte recruitment provides therapeutic opportunities for patients with aggressive vascular mimicry-positive cancer types. (c) 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
  •  
2.
  • Heldin, Carl-Henrik, et al. (författare)
  • Signals and Receptors
  • 2016
  • Ingår i: Cold Spring Harbor Perspectives in Biology. - : Cold Spring Harbor Laboratory. - 1943-0264. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Communication between cells in a multicellular organism occurs by the production of ligands (proteins, peptides, fatty acids, steroids, gases, and other low-molecular-weight compounds) that are either secreted by cells or presented on their surface, and act on receptors on, or in, other target cells. Such signals control cell growth, migration, survival, and differentiation. Signaling receptors can be single-span plasma membrane receptors associated with tyrosine or serine/threonine kinase activities, proteins with seven transmembrane domains, or intracellular receptors. Ligand-activated receptors convey signals into the cell by activating signaling pathways that ultimately affect cytosolic machineries or nuclear transcriptional programs or by directly translocating to the nucleus to regulate transcription.
  •  
3.
  • Melero-Fernandez de Mera, R. M., et al. (författare)
  • Effects of mutations in the post-translational modification sites on the trafficking of hyaluronan synthase 2 (HAS2)
  • 2019
  • Ingår i: Matrix Biology. - : Elsevier BV. - 0945-053X .- 1569-1802. ; 80, s. 85-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Vesicular trafficking of hyaluronan synthases (HAS1-3) from endoplasmic reticulum (ER) through Golgi to plasma membrane (PM), and either back to endosomes and lysosomes, or out into extracellular vesicles, is important for their activities. We studied how post-translational modifications affect the trafficking of HAS2 by mutagenesis of the sites of ubiquitination (K190R), phosphorylation (T110A) and 0-GIcNAcylation (S221A), using Dendra2- and EGFP-HAS2 transfected into COS1 cells. Confocal microscopy showed HAS2 wild type (wt) and its K19OR and S221A mutants in ER, Golgi and extracellular vesicles, while the T110A mutant remained mostly in the ER. HA synthesis was reduced by S221A, while completely blocked by K19OR and T110A. Cell-surface biotinylation indicated that T110A was absent from PM, while S221A was close to the level of wt, and K190R was increased in PM. TIRF microscopy analysis gave similar results. Rabl 0 silencing increased HA secretion by HAS2, likely by inhibiting endocytosis of the enzyme from PM, as reported before for HAS3. Green-to-red photo-conversion of Dendra2-HAS2 constructs suggested slower decay of K190R and S221A than HAS2 wt, while T110A was barely degraded at all. S221D and S221E, the phosphomimetic mutants of this site, decayed faster and blocked hyaluronan synthesis, suggesting alternative 0-GIcNAci-PO4 substitution to regulate the stability of the enzyme. Probing the role of dynamic 0-GIcNAcylation at S221 by adding glucosamine increased the half-life of only HAS2 wt. The Dendra2 " HAS2 disappearance from Golgi was slower for K190R. Of the two inactive constructs, K190R co-transfected with HAS2 wt suppressed, whereas T110A had no effect on HA synthesis. Interestingly, the HAS2stimulated shedding of extracellular vesicles was dependent on HAS residence in PM but independent of HA synthesis. The results indicate that post-translational modifications control the trafficking of HAS2, and that trafficking is an integral part of the post-translational regulation of HAS2 activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy