SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heslegrave Amanda) srt2:(2023)"

Sökning: WFRF:(Heslegrave Amanda) > (2023)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gibson, Lucy L, et al. (författare)
  • NMDA Receptor Antibodies and Neuropsychiatric Symptoms in Parkinson's Disease.
  • 2023
  • Ingår i: The Journal of neuropsychiatry and clinical neurosciences. - : American Psychiatric Association Publishing. - 1545-7222 .- 0895-0172. ; 35:3, s. 236-243
  • Tidskriftsartikel (refereegranskat)abstract
    • N-methyl-d-aspartate receptor (NMDAR) encephalitis is an autoantibody-mediated neurological syndrome with prominent cognitive and neuropsychiatric symptoms. The clinical relevance of NMDAR antibodies outside the context of encephalitis was assessed in this study.Plasma from patients with Parkinson's disease (PD) (N=108) and healthy control subjects (N=89) was screened at baseline for immunoglobulin A (IgA), IgM, and IgG NMDAR antibodies, phosphorylated tau 181 (p-tau181), and the neuroaxonal injury marker neurofilament light (NfL). Clinical assessment of the patients included measures of cognition (Mini-Mental State Examination [MMSE]) and neuropsychiatric symptoms (Hospital Anxiety and Depression Scale; Non-Motor Symptoms Scale for Parkinson's Disease). A subgroup of patients (N=61) was followed annually for up to 6 years.Ten (9%) patients with PD tested positive for NMDAR antibodies (IgA, N=5; IgM, N=6; IgG, N=0), and three (3%) healthy control subjects had IgM NMDAR antibodies; IgA NMDAR antibodies were detected significantly more commonly among patients with PD than healthy control subjects (χ2=4.23, df=1, p=0.04). Age, gender, and disease duration were not associated with NMDAR antibody positivity. Longitudinally, antibody-positive patients had significantly greater decline in annual MMSE scores when the analyses were adjusted for education, age, disease duration, p-tau181, NfL, and follow-up duration (adjusted R2=0.26, p=0.01). Neuropsychiatric symptoms were not associated with antibody status, and no associations were seen between NMDAR antibodies and p-tau181 or NfL levels.NMDAR antibodies were associated with greater cognitive impairment over time in patients with PD, independent of other pathological biomarkers, suggesting a potential contribution of these antibodies to cognitive decline in PD.
  •  
2.
  • Hamilton, Calum Alexander, et al. (författare)
  • Plasma biomarkers of neurodegeneration in mild cognitive impairment with Lewy bodies
  • 2023
  • Ingår i: PSYCHOLOGICAL MEDICINE. - 0033-2917 .- 1469-8978. ; 53:16, s. 7865-7873
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Blood biomarkers of Alzheimer's disease (AD) may allow for the early detection of AD pathology in mild cognitive impairment (MCI) due to AD (MCI-AD) and as a co-pathology in MCI with Lewy bodies (MCI-LB). However not all cases of MCI-LB will feature AD pathology. Disease-general biomarkers of neurodegeneration, such as glial fibrillary acidic protein (GFAP) or neurofilament light (NfL), may therefore provide a useful supplement to AD biomarkers. We aimed to compare the relative utility of plasma A beta 42/40, p-tau181, GFAP and NfL in differentiating MCI-AD and MCI-LB from cognitively healthy older adults, and from one another.Methods. Plasma samples were analysed for 172 participants (31 healthy controls, 48 MCI-AD, 28 possible MCI-LB and 65 probable MCI-LB) at baseline, and a subset (n = 55) who provided repeated samples after >= 1 year. Samples were analysed with a Simoa 4-plex assay for A beta 42, A beta 40, GFAP and NfL, and incorporated previously-collected p-tau181 from this same cohort.Results. Probable MCI-LB had elevated GFAP (p < 0.001) and NfL (p = 0.012) relative to controls, but not significantly lower A beta 42/40 (p = 0.06). GFAP and p-tau181 were higher in MCI-AD than MCI-LB. GFAP discriminated all MCI subgroups, from controls (AUC of 0.75), but no plasma-based marker effectively differentiated MCI-AD from MCI-LB. NfL correlated with disease severity and increased with MCI progression over time (p = 0.011).Conclusion. Markers of AD and astrocytosis/neurodegeneration are elevated in MCI-LB. GFAP offered similar utility to p-tau181 in distinguishing MCI overall, and its subgroups, from healthy controls.
  •  
3.
  • Kagiava, Alexia, et al. (författare)
  • Gene replacement therapy in two Golgi-retained CMT1X mutants before and after the onset of demyelinating neuropathy
  • 2023
  • Ingår i: MOLECULAR THERAPY METHODS & CLINICAL DEVELOPMENT. - 2329-0501. ; 30, s. 377-393
  • Tidskriftsartikel (refereegranskat)abstract
    • X-linked Charcot-Marie-Tooth disease type 1 (CMT1X) is a demyelinating neuropathy resulting from loss-of-function mu-tations affecting the GJB1/connexin 32 (Cx32) gene. We previ-ously showed functional and morphological improvement in Gjb1-null mice following AAV9-mediated delivery of human Cx32 driven by the myelin protein zero (Mpz) promoter in Schwann cells. However, CMT1X mutants may interfere with virally delivered wild-type (WT) Cx32. To confirm the efficacy of this vector also in the presence of CMT1X mutants, we deliv-ered AAV9-Mpz-GJB1 by lumbar intrathecal injection in R75W/Gjb1-null and N175D/Gjb1-null transgenic lines ex-pressing Golgi-retained mutations, before and after the onset of the neuropathy. Widespread expression of virally delivered Cx32 was demonstrated in both genotypes. Re-establishment of WT Cx32 function resulted in improved muscle strength and increased sciatic nerve motor conduction velocities in all treated groups from both mutant lines when treated before as well as after the onset of the neuropathy. Furthermore, morphological analysis showed improvement of myelination and reduction of inflammation in lumbar motor roots and pe-ripheral nerves. In conclusion, this study provides proof of principle for a clinically translatable gene therapy approach to treat CMT1X before and after the onset of the neuropathy, even in the presence of endogenously expressed Golgi-retained Cx32 mutants.
  •  
4.
  • Keddie, Stephen, et al. (författare)
  • Peripherin is a biomarker of axonal damage in peripheral nervous system disease
  • 2023
  • Ingår i: Brain. - 0006-8950 .- 1460-2156. ; 146:11, s. 4562-4573
  • Tidskriftsartikel (refereegranskat)abstract
    • Valid, responsive blood biomarkers specific to peripheral nerve damage would improve management of peripheral nervous system (PNS) diseases. Neurofilament light chain (NfL) is sensitive for detecting axonal pathology but is not specific to PNS damage, as it is expressed throughout the PNS and CNS. Peripherin, another intermediate filament protein, is almost exclusively expressed in peripheral nerve axons. We postulated that peripherin would be a promising blood biomarker of PNS axonal damage. We demonstrated that peripherin is distributed in sciatic nerve, and to a lesser extent spinal cord tissue lysates, but not in brain or extra-neural tissues. In the spinal cord, anti-peripherin antibody bound only to the primary cells of the periphery (anterior horn cells, motor axons and primary afferent sensory axons). In vitro models of antibody-mediated axonal and demyelinating nerve injury showed marked elevation of peripherin levels only in axonal damage and only a minimal rise in demyelination. We developed an immunoassay using single molecule array technology for the detection of serum peripherin as a biomarker for PNS axonal damage. We examined longitudinal serum peripherin and NfL concentrations in individuals with Guillain-Barr © syndrome (GBS, n = 45, 179 time points), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 35, 70 time points), multiple sclerosis (n = 30), dementia (as non-inflammatory CNS controls, n = 30) and healthy individuals (n = 24). Peak peripherin levels were higher in GBS than all other groups (median 18.75 pg/ml versus < 6.98 pg/ml, P < 0.0001). Peak NfL was highest in GBS (median 220.8 pg/ml) and lowest in healthy controls (median 5.6 pg/ml), but NfL did not distinguish between CIDP (17.3 pg/ml), multiple sclerosis (21.5 pg/ml) and dementia (29.9 pg/ml). While peak NfL levels were higher with older age (rho = +0.39, P < 0.0001), peak peripherin levels did not vary with age. In GBS, local regression analysis of serial peripherin in the majority of individuals with three or more time points of data (16/25) displayed a rise-and-fall pattern with the highest value within the first week of initial assessment. Similar analysis of serial NfL concentrations showed a later peak at 16 days. Group analysis of serum peripherin and NfL levels in GBS and CIDP patients were not significantly associated with clinical data, but in some individuals with GBS, peripherin levels appeared to better reflect clinical outcome measure improvement. Serum peripherin is a promising new, dynamic and specific biomarker of acute PNS axonal damage.
  •  
5.
  • Kodosaki, Eleftheria, et al. (författare)
  • Validating blood tests as a possible routine diagnostic assay of Alzheimer's disease.
  • 2023
  • Ingår i: Expert review of molecular diagnostics. - 1744-8352.
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years exciting developments in disease modifying treatments for Alzheimer's disease (AD) have made accurate and timely diagnosis of this disease a priority. Blood biomarkers (BBMs) for amyloid pathology using improved immunoassay and mass spectrometry techniques have been an area of intense research for the last 10years and are coming to the fore, as a real prospect to be used in the clinical diagnostics of the disease.The following review will update and discuss blood biomarkers that will be most useful in diagnosing AD and the context necessary for their implementation.It is clear we now have BBMs, and technology to measure them, that are capable of detecting amyloid pathology in AD. The challenge is to validate them across platforms and populations to incorporate them into clinical practice. It is important that implementation comes with education, we need to give clinicians the tools for appropriate use and interpretation. It is feasible that BBMs will be used to screen populations, initially for clinical trial entry but also therapeutic intervention in the foreseeable future. We now need to focus BBM research on other pathologies to ensure we accelerate development of therapeutics for all neurodegenerative diseases.
  •  
6.
  •  
7.
  • Parker, Thomas D., et al. (författare)
  • Active elite rugby participation is associated with altered precentral cortical thickness
  • 2023
  • Ingår i: Brain Communications. - 2632-1297. ; 5:6
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing concern that elite rugby participation may negatively influence brain health, but the underlying mechanisms are unclear. Cortical thickness is a widely applied biomarker of grey matter structure, but there is limited research into how it may be altered in active professional rugby players. Cross-sectional MRI data from 44 active elite rugby players, including 21 assessed within 1 week of head injury, and 47 healthy controls were analysed. We investigated how active elite rugby participation with and without sub-acute traumatic brain injury influenced grey matter structure using whole cortex and region of interest cortical thickness analyses. Relationships between cortical thickness and biomarkers of traumatic brain injury, including fractional anisotropy, plasma neurofilament light and glial fibrillary acidic protein, were also examined. In whole-cortex analyses, precentral cortical thickness in the right hemisphere was lower in rugby players compared with controls, which was due to reductions in non-injured players. Post hoc region of interest analyses showed non-injured rugby players had reduced cortical thickness in the inferior precentral sulcal thickness bilaterally (P = 0.005) and the left central sulcus (P = 0.037) relative to controls. In contrast, players in the sub-acute phase of mild traumatic brain injury had higher inferior precentral sulcal cortical thickness in the right hemisphere (P = 0.015). Plasma glial fibrillary acidic protein, a marker of astrocyte activation, was positively associated with right inferior precentral sulcal cortical thickness in injured rugby players (P = 0.0012). Elite rugby participation is associated with localized alterations in cortical thickness, specifically in sulcal motor regions. Sub-acute changes after mild traumatic brain injury are associated with evidence of astrocytic activation. The combination of cortical thickness and glial fibrillary acidic protein may be useful in understanding the pathophysiological relationship between sporting head injury and brain health.
  •  
8.
  • Stevenson-Hoare, Joshua, et al. (författare)
  • Plasma biomarkers and genetics in the diagnosis and prediction of Alzheimer's disease.
  • 2023
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 146:2, s. 690-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma biomarkers for Alzheimer's disease-related pathologies have undergone rapid developments during the past few years, and there are now well-validated blood tests for amyloid and tau pathology, as well as neurodegeneration and astrocytic activation. To define Alzheimer's disease with biomarkers rather than clinical assessment, we assessed prediction of research-diagnosed disease status using these biomarkers and tested genetic variants associated with the biomarkers that may reflect more accurately the risk of biochemically defined Alzheimer's disease instead of the risk of dementia. In a cohort of Alzheimer's disease cases (N=1439, mean age 68 years [SD=8.2]) and screened controls (N=508, mean age 82 years [SD=6.8]), we measured plasma concentrations of the 40 and 42 amino acid-long amyloid β fragments (Aβ40 and Aβ42, respectively), tau phosphorylated at amino acid 181 (P-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) using state-of-the-art Single molecule array (Simoa) technology. We tested the relationships between the biomarkers and Alzheimer's disease genetic risk, age at onset, and disease duration. We also conducted a genome-wide association study for association of disease risk genes with these biomarkers. The prediction accuracy of Alzheimer's disease clinical diagnosis by the combination of all biomarkers, APOE and polygenic risk score reached AUC=0.81, with the most significant contributors being ε4, Aβ40 or Aβ42, GFAP and NfL. All biomarkers were significantly associated with age in cases and controls (p<4.3x10-5). Concentrations of the Aβ-related biomarkers in plasma were significantly lower in cases compared with controls, whereas other biomarker levels were significantly higher in cases. In the case-control genome-wide analyses, APOE-ε4 was associated with all biomarkers (p=0.011- 4.78x10-8), except NfL. No novel genome-wide significant SNPs were found in the case-control design; however, in a case-only analysis, we found two independent genome-wide significant associations between the Aβ42/Aβ40 ratio and WWOX and COPG2 genes. Disease prediction modelling by the combination of all biomarkers indicates that the variance attributed to P-tau181 is mostly captured by APOE-ε4, whereas Aβ40, Aβ42, GFAP and NfL biomarkers explain additional variation over and above APOE. We identified novel plausible genome wide-significant genes associated with Aβ42/Aβ40 ratio in a sample which is fifty times smaller than current genome-wide association studies in Alzheimer's disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy