SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heslegrave Amanda) "

Sökning: WFRF:(Heslegrave Amanda)

  • Resultat 1-50 av 60
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alagaratnam, Jasmini, et al. (författare)
  • Correlation between cerebrospinal fluid and plasma neurofilament light protein in treated HIV infection: results from the COBRA study.
  • 2022
  • Ingår i: Journal of neurovirology. - : Springer Science and Business Media LLC. - 1538-2443 .- 1355-0284. ; 28:1, s. 54-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) neurofilament light protein (NfL) is a marker of central nervous system neuro-axonal injury. A novel, ultra-sensitive assay can determine plasma NfL. In untreated people-with-HIV (PWH), CSF and plasma NfL are strongly correlated. We aimed to assess this correlation in PWH on suppressive antiretroviral treatment (ART) and lifestyle-similar HIV-negative individuals enrolled into the COmorBidity in Relation to AIDS (COBRA) study. Differences in paired CSF (sandwich ELISA, UmanDiagnostics) and plasma (Simoa digital immunoassay, Quanterix™) NfL between PWH and HIV-negative participants were tested using Wilcoxon's test; associations were assessed using Pearson's correlation. CSF and plasma NfL, standardised to Z-scores, were included as dependent variables in linear regression models to identify factors independently associated with values in PWH and HIV-negative participants. Overall, 132 PWH (all with plasma HIV RNA<50 copies/mL) and 79 HIV-negative participants were included. Neither CSF (median 570 vs 568pg/mL, p=0.37) nor plasma (median 10.7 vs 9.9pg/mL, p=0.15) NfL differed significantly between PWH and HIV-negative participants, respectively. CSF and plasma NfL correlated moderately, with no significant difference by HIV status (PWH: rho=0.52; HIV-negative participants: rho=0.47, p (interaction)=0.63). In multivariable regression analysis, higher CSF NfL Z-score was statistically significantly associated with older age and higher CSF protein, and higher plasma NfL Z-score with older age, higher serum creatinine and lower bodyweight. In conclusion, in PWH on ART, the correlation between CSF and plasma NfL is moderate and similar to that observed in lifestyle-similar HIV-negative individuals. Consideration of renal function and bodyweight may be required when utilising plasma NfL.
  •  
2.
  • Alawode, Deborah O T, et al. (författare)
  • Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease.
  • 2021
  • Ingår i: Journal of internal medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 290:3, s. 583-601
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. Whilst these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N), and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
  •  
3.
  • Ali, Muhammad, et al. (författare)
  • Leveraging large multi-center cohorts of Alzheimer disease endophenotypes to understand the role of Klotho heterozygosity on disease risk.
  • 2022
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Two genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the Klotho (KL) gene, encoding a transmembrane protein, implicated in longevity and associated with brain resilience during normal aging, were recently shown to be associated with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carriers. Specifically, the participants heterozygous for this variant (KL-SVHET+) showed lower risk of developing AD. Furthermore, a neuroprotective effect of KL-VSHET+ has been suggested against amyloid burden for cognitively normal participants, potentially mediated via the regulation of redox pathways. However, inconsistent associations and a smaller sample size of existing studies pose significant hurdles in drawing definitive conclusions. Here, we performed a well-powered association analysis between KL-VSHET+ and five different AD endophenotypes; brain amyloidosis measured by positron emission tomography (PET) scans (n = 5,541) or cerebrospinal fluid Aβ42 levels (CSF; n = 5,093), as well as biomarkers associated with tau pathology: the CSF Tau (n = 5,127), phosphorylated Tau (pTau181; n = 4,778) and inflammation: CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2; n = 2,123) levels. Our results found nominally significant associations of KL-VSHET+ status with biomarkers for brain amyloidosis (e.g., CSF Aβ positivity; odds ratio [OR] = 0.67 [95% CI, 0.55-0.78], β = 0.72, p = 0.007) and tau pathology (e.g., biomarker positivity for CSF Tau; OR = 0.39 [95% CI, 0.19-0.77], β = -0.94, p = 0.007, and pTau; OR = 0.50 [95% CI, 0.27-0.96], β = -0.68, p = 0.04) in cognitively normal participants, 60-80 years old, who are APOE e4-carriers. Our work supports previous findings, suggesting that the KL-VSHET+ on an APOE ε4 genotype background may modulate Aβ and tau pathology, thereby lowering the intensity of neurodegeneration and incidence of cognitive decline in older controls susceptible to AD.
  •  
4.
  • Alosco, Michael L, et al. (författare)
  • Cerebrospinal fluid tau, Aβ, and sTREM2 in Former National Football League Players: Modeling the relationship between repetitive head impacts, microglial activation, and neurodegeneration.
  • 2018
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 14:9, s. 1159-1170
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) protein analysis may facilitate detection and elucidate mechanisms of neurological consequences from repetitive head impacts (RHI), such as chronic traumatic encephalopathy. We examined CSF concentrations of total tau (t-tau), phosphorylated tau, and amyloid β1-42 and their association with RHI in former National Football League (NFL) players. The role of microglial activation (using sTREM2) was examined as a pathogenic mechanism of chronic traumatic encephalopathy.Sixty-eight former NFL players and 21 controls underwent lumbar puncture to quantify t-tau, p-tau181, amyloid β1-42, and sTREM2 in the CSF using immunoassays. The cumulative head impact index estimated RHI.No between-group differences for CSF analytes emerged. In the former NFL players, the cumulative head impact index predicted higher t-tau concentrations (P=.041), and higher sTREM2 levels were associated with higher t-tau concentrations (P=.009).In this sample of former NFL players, greater RHI and increased microglial activation were associated with higher CSF t-tau concentrations.
  •  
5.
  • Altmann, Patrick, et al. (författare)
  • Increased serum neurofilament light chain concentration indicates poor outcome in Guillain-Barré syndrome.
  • 2020
  • Ingår i: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Guillain-Barré syndrome (GBS) is an autoimmune disease that results in demyelination and axonal damage. Five percent of patients die and 20% remain significantly disabled on recovery. Recovery is slow in most cases and eventual disability is difficult to predict, especially early in the disease. Blood or cerebrospinal fluid (CSF) biomarkers that could help identify patients at risk of poor outcome are required. We measured serum neurofilament light chain (sNfL) concentrations from blood taken upon admission and investigated a correlation between sNfL and clinical outcome.Baseline sNfL levels in 27 GBS patients were compared with a control group of 22 patients with diagnoses not suggestive of any axonal damage. Clinical outcome parameters for GBS patients included (i) the Hughes Functional Score (HFS) at admission, nadir, and discharge; (ii) the number of days hospitalised; and (iii) whether intensive care was necessary.The median sNfL concentration in our GBS sample on admission was 85.5pg/ml versus 9.1pg/ml in controls. A twofold increase in sNfL concentration at baseline was associated with an HFS increase of 0.6 at nadir and reduced the likelihood of discharge with favourable outcome by a factor of almost three. Higher sNfL levels upon admission correlated well with hospitalisation time (rs=0.69, p<0.0001), during which transfer to intensive care occurred more frequently at an odds ratio of 2.4. Patients with baseline sNfL levels below 85.5pg/ml had a 93% chance of being discharged with an unimpaired walking ability.sNfL levels measured at hospital admission correlated with clinical outcome in GBS patients. These results represent amounts of acute axonal damage and reflect mechanisms resulting in disability in GBS. Thus, sNfL may serve as a convenient blood-borne biomarker to personalise patient care by identifying those at higher risk of poor outcome.
  •  
6.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma levels of soluble TREM2 and neurofilament light chain in TREM2 rare variant carriers.
  • 2019
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Results from recent clinical studies suggest that cerebrospinal fluid (CSF) biomarkers that are indicative of Alzheimer's disease (AD) can be replicated in blood, e.g. amyloid-beta peptides (Aβ42 and Aβ40) and neurofilament light chain (NFL). Such data proposes that blood is a rich source of potential biomarkers reflecting central nervous system pathophysiology and should be fully explored for biomarkers that show promise in CSF. Recently, soluble fragments of the triggering receptor expressed on myeloid cells 2 (sTREM2) protein in CSF have been reported to be increased in prodromal AD and also in individuals with TREM2 rare genetic variants that increase the likelihood of developing dementia.In this study, we measured the levels of plasma sTREM2 and plasma NFL using the MesoScale Discovery and single molecule array platforms, respectively, in 48 confirmed TREM2 rare variant carriers and 49 non-carriers.Our results indicate that there are no changes in plasma sTREM2 and NFL concentrations between TREM2 rare variant carriers and non-carriers. Furthermore, plasma sTREM2 is not different between healthy controls, mild cognitive impairment (MCI) or AD.Concentrations of plasma sTREM2 do not mimic the recent changes found in CSF sTREM2.
  •  
7.
  • Banerjee, Gargi, et al. (författare)
  • Cerebrospinal Fluid Biomarkers in Cerebral Amyloid Angiopathy.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 74:4, s. 1189-1201
  • Tidskriftsartikel (refereegranskat)abstract
    • There is limited data on cerebrospinal fluid (CSF) biomarkers in sporadic amyloid-β (Aβ) cerebral amyloid angiopathy (CAA).To determine the profile of biomarkers relevant to neurodegenerative disease in the CSF of patients with CAA.We performed a detailed comparison of CSF markers, comparing patients with CAA, Alzheimer's disease (AD), and control (CS) participants, recruited from the Biomarkers and Outcomes in CAA (BOCAA) study, and a Specialist Cognitive Disorders Service.We included 10 CAA, 20 AD, and 10 CS participants (mean age 68.6, 62.5, and 62.2 years, respectively). In unadjusted analyses, CAA patients had a distinctive CSF biomarker profile, with significantly lower (p<0.01) median concentrations of Aβ38, Aβ40, Aβ42, sAβPPα, and sAβPPβ. CAA patients had higher levels of neurofilament light (NFL) than the CS group (p<0.01), but there were no significant differences in CSF total tau, phospho-tau, soluble TREM2 (sTREM2), or neurogranin concentrations. AD patients had higher total tau, phospho-tau and neurogranin than CS and CAA groups. In age-adjusted analyses, differences for the CAA group remained for Aβ38, Aβ40, Aβ42, and sAβPPβ. Comparing CAA patients with amyloid-PET positive (n=5) and negative (n=5) scans, PET positive individuals had lower (p<0.05) concentrations of CSF Aβ42, and higher total tau, phospho-tau, NFL, and neurogranin concentrations, consistent with an "AD-like" profile.CAA has a characteristic biomarker profile, suggestive of a global, rather than selective, accumulation of amyloid species; we also provide evidence of different phenotypes according to amyloid-PET positivity. Further replication and validation of these preliminary findings in larger cohorts is needed.
  •  
8.
  • Batzu, Lucia, et al. (författare)
  • Plasma p-tau181, neurofilament light chain and association with cognition in Parkinson's disease.
  • 2022
  • Ingår i: NPJ Parkinson's disease. - : Springer Science and Business Media LLC. - 2373-8057. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Early identification of cognitive impairment in Parkinson's disease (PD) has important clinical and research implications. The aim of our study was to investigate the role of plasma tau phosphorylated at amino acid 181 (p-tau181) and plasma neurofilament light chain (NfL) as biomarkers of cognition in PD. Baseline concentrations of plasma p-tau181 and NfL were measured in a cohort of 136 patients with PD and 63 healthy controls (HC). Forty-seven PD patients were followed up for up to 2 years. Cross-sectional and longitudinal associations between baseline plasma biomarkers and cognitive progression were investigated using linear regression and linear mixed effects models. At baseline, plasma p-tau181 concentration was significantly higher in PD subjects compared with HC (p=0.026). In PD patients, higher plasma NfL was associated with lower MMSE score at baseline, after adjusting for age, sex and education (p=0.027). Baseline plasma NfL also predicted MMSE decline over time in the PD group (p=0.020). No significant association between plasma p-tau181 concentration and baseline or longitudinal cognitive performance was found. While the role of p-tau181 as a diagnostic biomarker for PD and its relationship with cognition need further elucidation, plasma NfL may serve as a feasible, non-invasive biomarker of cognitive progression in PD.
  •  
9.
  • Carroll, Antonia S., et al. (författare)
  • Serum neurofilament light chain in hereditary transthyretin amyloidosis: validation in real-life practice
  • 2024
  • Ingår i: AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS. - 1350-6129 .- 1744-2818.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neurofilament light chain (NfL) has emerged as a sensitive biomarker in hereditary transthyretin amyloid polyneuropathy (ATTRv-PN). We hypothesise that NfL can identify conversion of gene carriers to symptomatic disease, and guide treatment approaches. Methods: Serum NfL concentration was measured longitudinally (2015-2022) in 59 presymptomatic and symptomatic ATTR variant carriers. Correlations between NfL and demographics, biochemistry and staging scores were performed as well as longitudinal changes pre- and post-treatment, and in asymptomatic and symptomatic cohorts. Receiver-operating analyses were performed to determine cut-off values. Results: NfL levels correlated with examination scores (CMTNS, NIS and MRC; all p < .01) and increased with disease severity (PND and FAP; all p < .05). NfL was higher in symptomatic and sensorimotor converters, than asymptomatic or sensory converters irrespective of time (all p < .001). Symptomatic or sensorimotor converters were discriminated from asymptomatic patients by NfL concentrations >64.5 pg/ml (sensitivity= 91.9%, specificity = 88.5%), whereas asymptomatic patients could only be discriminated from sensory or sensorimotor converters or symptomatic individuals by a NfL concentration >88.9 pg/ml (sensitivity = 62.9%, specificity = 96.2%) However, an NfL increment of 17% over 6 months could discriminate asymptomatic from sensory or sensorimotor converters (sensitivity = 88.9%, specificity = 80.0%). NfL reduced with treatment by 36%/year and correlated with TTR suppression (r = 0.64, p = .008). Conclusions: This data validates the use of serum NfL to identify conversion to symptomatic disease in ATTRv-PN. NfL levels can guide assessment of disease progression and response to therapies.
  •  
10.
  • Clarke, Mica T M, et al. (författare)
  • CSF synaptic protein concentrations are raised in those with atypical Alzheimer's disease but not frontotemporal dementia.
  • 2019
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased CSF levels of a number of synaptic markers have been reported in Alzheimer's disease (AD), but little is known about their concentrations in frontotemporal dementia (FTD). We investigated this in three synaptic proteins, neurogranin, SNAP-25, and synaptotagmin-1.CSF samples were analysed from 66 patients with a disorder in the FTD spectrum and 19 healthy controls. Patients were stratified by their tau to Aβ42 ratio: those with a ratio of >1 considered as having likely AD pathology, i.e. an atypical form of AD ('AD biomarker' group [n=18]), and <1 as likely FTD pathology ('FTD biomarker' group [n=48]). A subgroup analysis compared those in the FTD group with likely tau (n=7) and TDP-43 (n=18) pathology. Concentrations of neurogranin were measured using two different ELISAs (Ng22 and Ng36), and concentrations of two SNAP-25 fragments (SNAP-25tot and SNAP-25aa40) and synaptotagmin-1 were measured via mass spectrometry.The AD biomarker group had significantly higher concentrations of all synaptic proteins compared to controls except for synaptotagmin-1 where there was only a trend to increased levels-Ng22, AD mean 232.2 (standard deviation 138.9) pg/ml, controls 137.6 (95.9); Ng36, 225.5 (148.8) pg/ml, 130.0 (80.9); SNAP-25tot, 71.4 (27.9) pM, 53.5 (11.7); SNAP-25aa40, 14.0 (6.3), 7.9 (2.3) pM; and synaptotagmin-1, 287.7 (156.0) pM, 238.3 (71.4). All synaptic measures were significantly higher in the atypical AD group than the FTD biomarker group except for Ng36 where there was only a trend to increased levels-Ng22, 114.0 (117.5); Ng36, 171.1 (75.2); SNAP-25tot, 49.2 (16.7); SNAP-25aa40, 8.2 (3.4); and synaptotagmin-1, 197.1 (78.9). No markers were higher in the FTD biomarker group than controls. No significant differences were seen in the subgroup analysis, but there was a trend to increased levels in those with likely tau pathology.No CSF synaptic proteins have been shown to be abnormal in those with likely FTD pathologically. Higher CSF synaptic protein concentrations of neurogranin, SNAP-25, and synaptotagmin-1 appear to be related to AD pathology.
  •  
11.
  • Foiani, Martha S, et al. (författare)
  • Plasma tau is increased in frontotemporal dementia.
  • 2018
  • Ingår i: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 89:8, s. 804-807
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder presenting clinically with personality change (behavioural variant FTD (bvFTD)) or language deficits (primary progressive aphasia (PPA)). About a third of FTD is familial with mutations inGRN,MAPTandC9orf72being the major genetic causes. Robust biomarkers of the underlying pathology are still lacking in FTD with no markers currently being able to distinguish those with tau and TDP-43 inclusions during life.This study used an ultrasensitive single molecule methodology to measure plasma tau concentrations in 176 participants: 71 with bvFTD, 83 with PPA and 22 healthy controls. The patient group included 36 with pathogenic mutations in eitherMAPT(n=12),GRN(n=9) orC9orf72(n=15). Group comparisons were performed between clinical and genetic groups and controls using a linear regression model with bias-corrected bootstrap CIs. Correlative analyses were performed to investigate associations with measures of disease severity and progression.Higher plasma tau concentrations were seen in bvFTD (mean 1.96 (SD 1.07) pg/mL) and PPA (2.65 (2.15) pg/mL) compared with controls (1.67 (0.50) pg/mL). Investigating the PPA group further showed significantly higher levels compared with controls in each of the PPA subtypes (non-fluent, semantic and logopenic variants, as well as a fourth group not meeting criteria for one of the three main variants). In the genetic groups, only theMAPTgroup had significantly increased concentrations (2.62 (1.39) pg/mL) compared with controls. No significant correlations were seen with cross-sectional or longitudinal brain volumes, serum neurofilament light chain concentrations or disease duration.Plasma tau levels are increased in FTD in all clinical groups, but in the genetic subtypes only inMAPTmutations, the group of patients who definitively have tau pathology at postmortem. Future studies will be required in pathologically confirmed cohorts to investigate this association further, and whether plasma tau will be helpful in differentiating patients with FTD with tau from those with other pathologies.
  •  
12.
  • Gafson, Arie R, et al. (författare)
  • Breaking the cycle: Reversal of flux in the tricarboxylic acid cycle by dimethyl fumarate.
  • 2019
  • Ingår i: Neurology(R) neuroimmunology & neuroinflammation. - 2332-7812. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • To infer molecular effectors of therapeutic effects and adverse events for dimethyl fumarate (DMF) in patients with relapsing-remitting MS (RRMS) using untargeted plasma metabolomics.Plasma from 27 patients with RRMS was collected at baseline and 6 weeks after initiating DMF. Patients were separated into discovery (n = 15) and validation cohorts (n = 12). Ten healthy controls were also recruited. Metabolomic profiling using ultra-high-performance liquid chromatography mass spectrometry (UPLC-MS) was performed on the discovery cohort and healthy controls at Metabolon Inc (Durham, NC). UPLC-MS was performed on the validation cohort at the National Phenome Centre (London, UK). Plasma neurofilament concentration (pNfL) was assayed using the Simoa platform (Quanterix, Lexington, MA). Time course and cross-sectional analyses were performed to identify pharmacodynamic changes in the metabolome secondary to DMF and relate these to adverse events.In the discovery cohort, tricarboxylic acid (TCA) cycle intermediates fumarate and succinate, and TCA cycle metabolites succinyl-carnitine and methyl succinyl-carnitine increased 6 weeks following treatment (q < 0.05). Methyl succinyl-carnitine increased in the validation cohort (q < 0.05). These changes were not observed in the control population. Increased succinyl-carnitine and methyl succinyl-carnitine were associated with adverse events from DMF (flushing and abdominal symptoms). pNfL concentration was higher in patients with RRMS than in controls and reduced over 15 months of treatment.TCA cycle intermediates and metabolites are increased in patients with RRMS treated with DMF. The results suggest reversal of flux through the succinate dehydrogenase complex. The contribution of succinyl-carnitine ester agonism at hydroxycarboxylic acid receptor 2 to both therapeutic effects and adverse events requires investigation.
  •  
13.
  • Garcia-Moreno, Hector, et al. (författare)
  • Tau and neurofilament light-chain as fluid biomarkers in spinocerebellar ataxia type 3
  • 2022
  • Ingår i: European Journal of Neurology. - : Wiley. - 1351-5101 .- 1468-1331. ; 29:8, s. 2439-2452
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Clinical trials in spinocerebellar ataxia type 3 (SCA3) will require biomarkers for use as outcome measures.METHODS: To evaluate total tau (t-tau), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCHL1) and neurofilament light-chain (NfL) as fluid biomarkers in SCA3, ATXN3 mutation carriers (n = 143) and controls (n = 172) were clinically assessed, and the plasma concentrations of the four proteins were analysed on the Simoa HD-1 platform. Eleven ATXN3 mutation carrier cerebrospinal fluid samples were analysed for t-tau and phosphorylated tau (p-tau181 ). A transgenic SCA3 mouse model (MJDTg) was used to measure cerebellar t-tau levels.RESULTS: Plasma t-tau levels were higher in mutation carriers below the age of 50 compared to controls, and the Inventory of Non-Ataxia Signs was associated with t-tau in ataxic patients (p = 0.004). Pre-ataxic carriers showed higher cerebrospinal fluid t-tau and p-tau181 concentrations compared to ataxic patients (p = 0.025 and p = 0.014, respectively). Cerebellar t-tau was elevated in MJDTg mice compared to wild-type (p = 0.033) only in the early stages of the disease. GFAP and UCHL1 did not show higher levels in mutation carriers compared to controls. Plasma NfL concentrations were higher in mutation carriers compared to controls, and differences were greater for younger carriers. The Scale for the Assessment and Rating of Ataxia was the strongest predictor of NfL in ataxic patients (p < 0.001).CONCLUSION: Our results suggest that tau might be a marker of early disease stages in SCA3. NfL can discriminate mutation carriers from controls and is associated with different clinical variables. Longitudinal studies are required to confirm their potential role as biomarkers in clinical trials.
  •  
14.
  • Garland, Patrick, et al. (författare)
  • Neurofilament light predicts neurological outcome after subarachnoid haemorrhage.
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 144:3, s. 761-768
  • Tidskriftsartikel (refereegranskat)abstract
    • To improve outcome prediction following subarachnoid haemorrhage (SAH), we sought a biomarker integrating early brain injury and multiple secondary pathological processes in a prospective study of 42 non-traumatic SAH patients and 19 control individuals. Neurofilament light (NF-L) was elevated in CSF and serum following SAH. CSF and serum NF-L on Days 1-3 post-SAH strongly predicted modified Rankin score at 6 months, independent of World Federation of Neurosurgical Societies (WFNS) score. NF-L from Day 4 onwards also had a profound impact on outcome. To link NF-L to a SAH-specific pathological process, we investigated NF-L's relationship with extracellular haemoglobin. Most CSF haemoglobin was not complexed with haptoglobin, yet was able to be bound by exogenous haptoglobin i.e. haemoglobin was scavengeable. CSF scavengeable haemoglobin was strongly predictive of subsequent CSF NF-L. Next, we investigated NF-L efflux from the brain after SAH. Serum and CSF NF-L correlated positively. The serum/CSF NF-L ratio was lower in SAH versus control subjects, in keeping with glymphatic efflux dysfunction after SAH. CSF/serum albumin ratio was increased following SAH versus controls. The serum/CSF NF-L ratio correlated negatively with the CSF/serum albumin ratio, indicating that transfer of the two proteins across the blood-brain interface is dissociated. In summary, NF-L is a strong predictive marker for SAH clinical outcome, adding value to the WFNS score, and is a promising surrogate end point in clinical trials.
  •  
15.
  • Gibson, Lucy L, et al. (författare)
  • NMDA Receptor Antibodies and Neuropsychiatric Symptoms in Parkinson's Disease.
  • 2023
  • Ingår i: The Journal of neuropsychiatry and clinical neurosciences. - : American Psychiatric Association Publishing. - 1545-7222 .- 0895-0172. ; 35:3, s. 236-243
  • Tidskriftsartikel (refereegranskat)abstract
    • N-methyl-d-aspartate receptor (NMDAR) encephalitis is an autoantibody-mediated neurological syndrome with prominent cognitive and neuropsychiatric symptoms. The clinical relevance of NMDAR antibodies outside the context of encephalitis was assessed in this study.Plasma from patients with Parkinson's disease (PD) (N=108) and healthy control subjects (N=89) was screened at baseline for immunoglobulin A (IgA), IgM, and IgG NMDAR antibodies, phosphorylated tau 181 (p-tau181), and the neuroaxonal injury marker neurofilament light (NfL). Clinical assessment of the patients included measures of cognition (Mini-Mental State Examination [MMSE]) and neuropsychiatric symptoms (Hospital Anxiety and Depression Scale; Non-Motor Symptoms Scale for Parkinson's Disease). A subgroup of patients (N=61) was followed annually for up to 6 years.Ten (9%) patients with PD tested positive for NMDAR antibodies (IgA, N=5; IgM, N=6; IgG, N=0), and three (3%) healthy control subjects had IgM NMDAR antibodies; IgA NMDAR antibodies were detected significantly more commonly among patients with PD than healthy control subjects (χ2=4.23, df=1, p=0.04). Age, gender, and disease duration were not associated with NMDAR antibody positivity. Longitudinally, antibody-positive patients had significantly greater decline in annual MMSE scores when the analyses were adjusted for education, age, disease duration, p-tau181, NfL, and follow-up duration (adjusted R2=0.26, p=0.01). Neuropsychiatric symptoms were not associated with antibody status, and no associations were seen between NMDAR antibodies and p-tau181 or NfL levels.NMDAR antibodies were associated with greater cognitive impairment over time in patients with PD, independent of other pathological biomarkers, suggesting a potential contribution of these antibodies to cognitive decline in PD.
  •  
16.
  • Gisslén, Magnus, 1962, et al. (författare)
  • CSF concentrations of soluble TREM2 as a marker of microglial activation in HIV-1 infection
  • 2019
  • Ingår i: Neurology-Neuroimmunology & Neuroinflammation. - : Ovid Technologies (Wolters Kluwer Health). - 2332-7812. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To explore changes in CSF sTREM2 concentrations in the evolving course of HIV-1 infection. In this retrospective cross-sectional study, we measured concentrations of the macrophage/ microglial activation marker sTREM2 in CSF samples from 121 HIV-1-infected adults and 11 HIV-negative controls and examined their correlations with other CSF and blood biomarkers of infection, inflammation, and neuronal injury. CSF sTREM2 increased with systemic and CNS HIV-1 disease severity, with the highest levels found in patients with HIV-associated dementia (HAD). In untreated HIV-1-infected patients without an HAD diagnosis, levels of CSF sTREM2 increased with decreasing CD4(+) T-cell counts. CSF concentrations of both sTREM2 and the neuronal injury marker neurofilament light protein (NFL) were significantly associated with age. CSF sTREM2 levels were also independently correlated with CSF NFL. Notably, this association was also observed in HIV-negative controls with normal CSF NFL. HIV-infected patients on suppressive antiretroviral treatment had CSF sTREM2 levels comparable to healthy controls. Elevations in CSF sTREM2 levels, an indicator of macrophage/microglial activation, are a common feature of untreated HIV-1 infection that increases with CD4(+) T-cell loss and reaches highest levels in HAD. The strong and independent association between CSF sTREM2 and CSF NFL suggests a linkage between microglial activation and neuronal injury in HIV-1 infection. CSF sTREM2 has the potential of being a useful biomarker of innate CNS immune activation in different stages of untreated and treated HIV-1 infection.
  •  
17.
  • Graham, Neil Samuel Nyholm, et al. (författare)
  • Multicentre longitudinal study of fluid and neuroimaging BIOmarkers of AXonal injury after traumatic brain injury: the BIO-AX-TBI study protocol.
  • 2020
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) often results in persistent disability, due particularly to cognitive impairments. Outcomes remain difficult to predict but appear to relate to axonal injury. Several new approaches involving fluid and neuroimaging biomarkers show promise to sensitively quantify axonal injury. By assessing these longitudinally in a large cohort, we aim both to improve our understanding of the pathophysiology of TBI, and provide better tools to predict clinical outcome.BIOmarkers of AXonal injury after TBI is a prospective longitudinal study of fluid and neuroimaging biomarkers of axonal injury after moderate-to-severe TBI, currently being conducted across multiple European centres. We will provide a detailed characterisation of axonal injury after TBI, using fluid (such as plasma/microdialysate neurofilament light) and neuroimaging biomarkers (including diffusion tensor MRI), which will then be related to detailed clinical, cognitive and functional outcome measures. We aim to recruit at least 250 patients, including 40 with cerebral microdialysis performed, with serial assessments performed twice in the first 10 days after injury, subacutely at 10 days to 6weeks, at 6 and 12 months after injury.The relevant ethical approvals have been granted by the following ethics committees: in London, by the Camberwell St Giles Research Ethics Committee; in Policlinico (Milan), by the Comitato Etico Milano Area 2; in Niguarda (Milan), by the Comitato Etico Milano Area 3; in Careggi (Florence), by the Comitato Etico Regionale per la Sperimentazione Clinica della Regione Toscana, Sezione area vasta centro; in Trento, by the Trento Comitato Etico per le Sperimentazioni Cliniche, Azienda Provinciale per i Servizi Sanitari della Provincia autonoma di Trento; in Lausanne, by the Commission cantonale d'éthique de la recherche sur l'être humain; in Ljubljana, by the National Medical Ethics Committee at the Ministry of Health of the Republic of Slovenia. The study findings will be disseminated to patients, healthcare professionals, academics and policy-makers including through presentation at conferences and peer-reviewed publications. Data will be shared with approved researchers to provide further insights for patient benefit.NCT03534154.
  •  
18.
  • Guerreiro, Rita, et al. (författare)
  • Genetic Variants and Related Biomarkers in Sporadic Alzheimer's Disease.
  • 2015
  • Ingår i: Current genetic medicine reports. - : Springer Science and Business Media LLC. - 2167-4876. ; 3, s. 19-25
  • Tidskriftsartikel (refereegranskat)abstract
    • From a neuropathological perspective, elderly patients who die with a clinical diagnosis of sporadic Alzheimer's disease (AD) are a heterogeneous group with several different pathologies contributing to the AD phenotype. This poses a challenge when searching for low effect size susceptibility genes for AD. Further, control groups may be contaminated by significant numbers of preclinical AD patients, which also reduces the power of genetic association studies. Here, we discuss how cerebrospinal fluid and imaging biomarkers can be used to increase the chance of finding novel susceptibility genes and as a means to study the functional consequences of risk alleles.
  •  
19.
  • Hamilton, Calum Alexander, et al. (författare)
  • Plasma biomarkers of neurodegeneration in mild cognitive impairment with Lewy bodies
  • 2023
  • Ingår i: PSYCHOLOGICAL MEDICINE. - 0033-2917 .- 1469-8978. ; 53:16, s. 7865-7873
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Blood biomarkers of Alzheimer's disease (AD) may allow for the early detection of AD pathology in mild cognitive impairment (MCI) due to AD (MCI-AD) and as a co-pathology in MCI with Lewy bodies (MCI-LB). However not all cases of MCI-LB will feature AD pathology. Disease-general biomarkers of neurodegeneration, such as glial fibrillary acidic protein (GFAP) or neurofilament light (NfL), may therefore provide a useful supplement to AD biomarkers. We aimed to compare the relative utility of plasma A beta 42/40, p-tau181, GFAP and NfL in differentiating MCI-AD and MCI-LB from cognitively healthy older adults, and from one another.Methods. Plasma samples were analysed for 172 participants (31 healthy controls, 48 MCI-AD, 28 possible MCI-LB and 65 probable MCI-LB) at baseline, and a subset (n = 55) who provided repeated samples after >= 1 year. Samples were analysed with a Simoa 4-plex assay for A beta 42, A beta 40, GFAP and NfL, and incorporated previously-collected p-tau181 from this same cohort.Results. Probable MCI-LB had elevated GFAP (p < 0.001) and NfL (p = 0.012) relative to controls, but not significantly lower A beta 42/40 (p = 0.06). GFAP and p-tau181 were higher in MCI-AD than MCI-LB. GFAP discriminated all MCI subgroups, from controls (AUC of 0.75), but no plasma-based marker effectively differentiated MCI-AD from MCI-LB. NfL correlated with disease severity and increased with MCI progression over time (p = 0.011).Conclusion. Markers of AD and astrocytosis/neurodegeneration are elevated in MCI-LB. GFAP offered similar utility to p-tau181 in distinguishing MCI overall, and its subgroups, from healthy controls.
  •  
20.
  •  
21.
  • Heslegrave, Amanda, et al. (författare)
  • Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer's disease.
  • 2016
  • Ingår i: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery that heterozygous missense mutations in the gene encoding triggering receptor expressed on myeloid cells 2 (TREM2) are risk factors for Alzheimer's disease (AD), with only the apolipoprotein E (APOE) ε4 gene allele conferring a higher risk, has led to increased interest in immune biology in the brain. TREM2 is expressed on microglia, the resident immune cells of the brain and has been linked to phagocytotic clearance of amyloid β (Aβ) plaques. Soluble TREM2 (sTREM2) has previously been measured in cerebrospinal fluid (CSF) by ELISA but in our hands commercial kits have proved unreliable, suggesting that other methods may be required. We developed a mass spectrometry method using selected reaction monitoring for the presence of a TREM2 peptide, which can be used to quantify levels of sTREM2 in CSF.
  •  
22.
  •  
23.
  • James, Sarah-Naomi, et al. (författare)
  • A population-based study of head injury, cognitive function and pathological markers.
  • 2021
  • Ingår i: Annals of clinical and translational neurology. - : Wiley. - 2328-9503. ; 8:4, s. 842-856
  • Tidskriftsartikel (refereegranskat)abstract
    • To assess associations between head injury (HI) with loss of consciousness (LOC), ageing and markers of later-life cerebral pathology; and to explore whether those effects may help explain subtle cognitive deficits in dementia-free individuals.Participants (n=502, age=69-71) from the 1946 British Birth Cohort underwent cognitive testing (subtests of Preclinical Alzheimer Cognitive Composite), 18 F-florbetapir Aβ-PET and MR imaging. Measures include Aβ-PET status, brain, hippocampal and white matter hyperintensity (WMH) volumes, normal appearing white matter (NAWM) microstructure, Alzheimer's disease (AD)-related cortical thickness, and serum neurofilament light chain (NFL). LOC HI metrics include HI occurring: (i) >15years prior to the scan (ii) anytime up to age 71.Compared to those with no evidence of an LOC HI, only those reporting an LOC HI>15years prior (16%, n=80) performed worse on cognitive tests at age 69-71, taking into account premorbid cognition, particularly on the digit-symbol substitution test (DSST). Smaller brain volume (BV) and adverse NAWM microstructural integrity explained 30% and 16% of the relationship between HI and DSST, respectively. We found no evidence that LOC HI was associated with Aβ load, hippocampal volume, WMH volume, AD-related cortical thickness or NFL (all p>0.01).Having a LOC HI aged 50's and younger was linked with lower later-life cognitive function at age ~70 than expected. This may reflect a damaging but small impact of HI; explained in part by smaller BV and different microstructure pathways but not via pathology related to AD (amyloid, hippocampal volume, AD cortical thickness) or ongoing neurodegeneration (serum NFL).
  •  
24.
  • Kagiava, Alexia, et al. (författare)
  • AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy.
  • 2021
  • Ingår i: Gene therapy. - : Springer Science and Business Media LLC. - 1476-5462 .- 0969-7128. ; 28:10-11, s. 659-675
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the GJB1 gene, encoding the gap junction (GJ) protein connexin32 (Cx32), cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited demyelinating neuropathy. We developed a gene therapy approach for CMT1X using an AAV9 vector to deliver the GJB1/Cx32 gene under the myelin protein zero (Mpz) promoter for targeted expression in Schwann cells. Lumbar intrathecal injection of the AAV9-Mpz.GJB1 resulted in widespread biodistribution in the peripheral nervous system including lumbar roots, sciatic and femoral nerves, as well as in Cx32 expression in the paranodal non-compact myelin areas of myelinated fibers. A pre-, as well as post-onset treatment trial in Gjb1-null mice, demonstrated improved motor performance and sciatic nerve conduction velocities along with improved myelination and reduced inflammation in peripheral nerve tissues. Blood biomarker levels were also significantly ameliorated in treated mice. This study provides evidence that a clinically translatable AAV9-mediated gene therapy approach targeting Schwann cells could potentially treat CMT1X.
  •  
25.
  • Kagiava, Alexia, et al. (författare)
  • Gene replacement therapy in two Golgi-retained CMT1X mutants before and after the onset of demyelinating neuropathy
  • 2023
  • Ingår i: MOLECULAR THERAPY METHODS & CLINICAL DEVELOPMENT. - 2329-0501. ; 30, s. 377-393
  • Tidskriftsartikel (refereegranskat)abstract
    • X-linked Charcot-Marie-Tooth disease type 1 (CMT1X) is a demyelinating neuropathy resulting from loss-of-function mu-tations affecting the GJB1/connexin 32 (Cx32) gene. We previ-ously showed functional and morphological improvement in Gjb1-null mice following AAV9-mediated delivery of human Cx32 driven by the myelin protein zero (Mpz) promoter in Schwann cells. However, CMT1X mutants may interfere with virally delivered wild-type (WT) Cx32. To confirm the efficacy of this vector also in the presence of CMT1X mutants, we deliv-ered AAV9-Mpz-GJB1 by lumbar intrathecal injection in R75W/Gjb1-null and N175D/Gjb1-null transgenic lines ex-pressing Golgi-retained mutations, before and after the onset of the neuropathy. Widespread expression of virally delivered Cx32 was demonstrated in both genotypes. Re-establishment of WT Cx32 function resulted in improved muscle strength and increased sciatic nerve motor conduction velocities in all treated groups from both mutant lines when treated before as well as after the onset of the neuropathy. Furthermore, morphological analysis showed improvement of myelination and reduction of inflammation in lumbar motor roots and pe-ripheral nerves. In conclusion, this study provides proof of principle for a clinically translatable gene therapy approach to treat CMT1X before and after the onset of the neuropathy, even in the presence of endogenously expressed Golgi-retained Cx32 mutants.
  •  
26.
  • Keddie, Stephen, et al. (författare)
  • Peripherin is a biomarker of axonal damage in peripheral nervous system disease
  • 2023
  • Ingår i: Brain. - 0006-8950 .- 1460-2156. ; 146:11, s. 4562-4573
  • Tidskriftsartikel (refereegranskat)abstract
    • Valid, responsive blood biomarkers specific to peripheral nerve damage would improve management of peripheral nervous system (PNS) diseases. Neurofilament light chain (NfL) is sensitive for detecting axonal pathology but is not specific to PNS damage, as it is expressed throughout the PNS and CNS. Peripherin, another intermediate filament protein, is almost exclusively expressed in peripheral nerve axons. We postulated that peripherin would be a promising blood biomarker of PNS axonal damage. We demonstrated that peripherin is distributed in sciatic nerve, and to a lesser extent spinal cord tissue lysates, but not in brain or extra-neural tissues. In the spinal cord, anti-peripherin antibody bound only to the primary cells of the periphery (anterior horn cells, motor axons and primary afferent sensory axons). In vitro models of antibody-mediated axonal and demyelinating nerve injury showed marked elevation of peripherin levels only in axonal damage and only a minimal rise in demyelination. We developed an immunoassay using single molecule array technology for the detection of serum peripherin as a biomarker for PNS axonal damage. We examined longitudinal serum peripherin and NfL concentrations in individuals with Guillain-Barr © syndrome (GBS, n = 45, 179 time points), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 35, 70 time points), multiple sclerosis (n = 30), dementia (as non-inflammatory CNS controls, n = 30) and healthy individuals (n = 24). Peak peripherin levels were higher in GBS than all other groups (median 18.75 pg/ml versus < 6.98 pg/ml, P < 0.0001). Peak NfL was highest in GBS (median 220.8 pg/ml) and lowest in healthy controls (median 5.6 pg/ml), but NfL did not distinguish between CIDP (17.3 pg/ml), multiple sclerosis (21.5 pg/ml) and dementia (29.9 pg/ml). While peak NfL levels were higher with older age (rho = +0.39, P < 0.0001), peak peripherin levels did not vary with age. In GBS, local regression analysis of serial peripherin in the majority of individuals with three or more time points of data (16/25) displayed a rise-and-fall pattern with the highest value within the first week of initial assessment. Similar analysis of serial NfL concentrations showed a later peak at 16 days. Group analysis of serum peripherin and NfL levels in GBS and CIDP patients were not significantly associated with clinical data, but in some individuals with GBS, peripherin levels appeared to better reflect clinical outcome measure improvement. Serum peripherin is a promising new, dynamic and specific biomarker of acute PNS axonal damage.
  •  
27.
  • Keshavan, Ashvini, et al. (författare)
  • Concordance of CSF measures of Alzheimer's pathology with amyloid PET status in a preclinical cohort: A comparison of Lumipulse and established immunoassays.
  • 2020
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed the concordance of cerebrospinal fluid (CSF) amyloid beta (Aβ) and tau measured on the fully automated Lumipulse platform with pre-symptomatic Alzheimer's disease (AD) pathology on amyloid positron emission tomography (PET).In 72 individuals from the Insight 46 study, CSF Aβ40, Aβ42, total tau (t-tau), and phosphorylated tau at site 181 (p-tau181) were measured using Lumipulse, INNOTEST, and Meso Scale Discovery (MSD) assays, and inter-platform Pearson correlations were derived. Logistic regressions and receiver-operating characteristic analysis generated CSF cut-points optimizing concordance with 18F-florbetapir amyloid PET status (n=63).Measurements of CSF Aβ, p-tau181, and their ratios correlated well across platforms (r 0.84-.94, P<.0001); those of t-tau and t-tau/Aβ42 correlated moderately (r 0.57-0.79, P<.0001). The best concordance with amyloid PET (100% sensitivity and 94% specificity) was afforded by cut-points of 0.110 for Lumipulse Aβ42/Aβ40, 0.087 for MSD Aβ42/Aβ40, and 25.3 for Lumipulse Aβ42/p-tau181.The Lumipulse platform provides comparable sensitivity and specificity to established CSF immunoassays in identifying pre-symptomatic AD pathology.
  •  
28.
  • Keshavan, Ashvini, et al. (författare)
  • Population-based blood screening for preclinical Alzheimer's disease in a British birth cohort at age 70.
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 144:2, s. 434-449
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease has a preclinical stage when cerebral amyloid-β deposition occurs before symptoms emerge, and when amyloid-β-targeted therapies may have maximum benefits. Existing amyloid-β status measurement techniques, including amyloid PET and CSF testing, are difficult to deploy at scale, so blood biomarkers are increasingly considered for screening. We compared three different blood-based techniques-liquid chromatography-mass spectrometry measures of plasma amyloid-β, and single molecule array (Simoa) measures of plasma amyloid-β and phospho-tau181-to detect cortical 18F-florbetapir amyloid PET positivity (defined as a standardized uptake value ratio of >0.61 between a predefined cortical region of interest and eroded subcortical white matter) in dementia-free members of Insight 46, a substudy of the population-based British 1946 birth cohort. We used logistic regression models with blood biomarkers as predictors of amyloid PET status, with or without age, sex and APOE ε4 carrier status as covariates. We generated receiver operating characteristics curves and quantified areas under the curves to compare the concordance of the different blood tests with amyloid PET. We determined blood test cut-off points using Youden's index, then estimated numbers needed to screen to obtain 100 amyloid PET-positive individuals. Of the 502 individuals assessed, 441 dementia-free individuals with complete data were included; 82 (18.6%) were amyloid PET-positive. The area under the curve for amyloid PET status using a base model comprising age, sex and APOE ε4 carrier status was 0.695 (95% confidence interval: 0.628-0.762). The two best-performing Simoa plasma biomarkers were amyloid-β42/40 (0.620; 0.548-0.691) and phospho-tau181 (0.707; 0.646-0.768), but neither outperformed the base model. Mass spectrometry plasma measures performed significantly better than any other measure (amyloid-β1-42/1-40: 0.817; 0.770-0.864 and amyloid-β composite: 0.820; 0.775-0.866). At a cut-off point of 0.095, mass spectrometry measures of amyloid-β1-42/1-40 detected amyloid PET positivity with 86.6% sensitivity and 71.9% specificity. Without screening, to obtain 100 PET-positive individuals from a population with similar amyloid PET positivity prevalence to Insight 46, 543 PET scans would need to be performed. Screening using age, sex and APOE ε4 status would require 940 individuals, of whom 266 would proceed to scan. Using mass spectrometry amyloid-β1-42/1-40 alone would reduce these numbers to 623 individuals and 243 individuals, respectively. Across a theoretical range of amyloid PET positivity prevalence of 10-50%, mass spectrometry measures of amyloid-β1-42/1-40 would consistently reduce the numbers proceeding to scans, with greater cost savings demonstrated at lower prevalence.
  •  
29.
  • Kodosaki, Eleftheria, et al. (författare)
  • Validating blood tests as a possible routine diagnostic assay of Alzheimer's disease.
  • 2023
  • Ingår i: Expert review of molecular diagnostics. - 1744-8352.
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years exciting developments in disease modifying treatments for Alzheimer's disease (AD) have made accurate and timely diagnosis of this disease a priority. Blood biomarkers (BBMs) for amyloid pathology using improved immunoassay and mass spectrometry techniques have been an area of intense research for the last 10years and are coming to the fore, as a real prospect to be used in the clinical diagnostics of the disease.The following review will update and discuss blood biomarkers that will be most useful in diagnosing AD and the context necessary for their implementation.It is clear we now have BBMs, and technology to measure them, that are capable of detecting amyloid pathology in AD. The challenge is to validate them across platforms and populations to incorporate them into clinical practice. It is important that implementation comes with education, we need to give clinicians the tools for appropriate use and interpretation. It is feasible that BBMs will be used to screen populations, initially for clinical trial entry but also therapeutic intervention in the foreseeable future. We now need to focus BBM research on other pathologies to ensure we accelerate development of therapeutics for all neurodegenerative diseases.
  •  
30.
  • Laverse, Etienne, et al. (författare)
  • Plasma glial fibrillary acidic protein and neurofilament light chain, but not tau, are biomarkers of sports-related mild traumatic brain injury.
  • 2020
  • Ingår i: Brain communications. - : Oxford University Press (OUP). - 2632-1297. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Mild traumatic brain injury is a relatively common event in contact sports and there is increasing interest in the long-term neurocognitive effects. The diagnosis largely relies on symptom reporting and there is a need for objective tools to aid diagnosis and prognosis. There are recent reports that blood biomarkers could potentially help triage patients with suspected injury and normal CT findings. We have measured plasma concentrations of glial and neuronal proteins and explored their potential in the assessment of mild traumatic brain injury in contact sport. We recruited a prospective cohort of active male rugby players, who had pre-season baseline plasma sampling. From this prospective cohort, we recruited 25 players diagnosed with mild traumatic brain injury. We sampled post-match rugby players without head injuries as post-match controls. We measured plasma neurofilament light chain, tau and glial fibrillary acidic protein levels using ultrasensitive single molecule array technology. The data were analysed at the group and individual player level. Plasma glial fibrillary acidic protein concentration was significantly increased 1-h post-injury in mild traumatic brain injury cases compared to the non-injured group (P=0.017). Pairwise comparison also showed that glial fibrillary acidic protein levels were higher in players after a head injury in comparison to their pre-season levels at both 1-h and 3- to 10-day post-injury time points (P=0.039 and 0.040, respectively). There was also an increase in neurofilament light chain concentration in brain injury cases compared to the pre-season levels within the same individual at both time points (P=0.023 and 0.002, respectively). Tau was elevated in both the non-injured control group and the 1-h post-injury group compared to pre-season levels (P=0.007 and 0.015, respectively). Furthermore, receiver operating characteristic analysis showed that glial fibrillary acidic protein and neurofilament light chain can separate head injury cases from control players. The highest diagnostic power was detected when biomarkers were combined in differentiating 1-h post-match control players from 1-h post-head injury players (area under curve 0.90, 95% confidence interval 0.79-1.00, P<0.0002). The brain astrocytic marker glial fibrillary acidic protein is elevated in blood 1h after mild traumatic brain injury and in combination with neurofilament light chain displayed the potential as a reliable biomarker for brain injury evaluation. Plasma total tau is elevated following competitive rugby with and without a head injury, perhaps related to peripheral nerve trauma and therefore total tau does not appear to be suitable as a blood biomarker.
  •  
31.
  • Leckey, Claire A, et al. (författare)
  • CSF neurofilament light chain profiling and quantitation in neurological diseases.
  • 2024
  • Ingår i: Brain communications. - 2632-1297. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilament light chain is an established marker of neuroaxonal injury that is elevated in CSF and blood across various neurological diseases. It is increasingly used in clinical practice to aid diagnosis and monitor progression and as an outcome measure to assess safety and efficacy of disease-modifying therapies across the clinical translational neuroscience field. Quantitative methods for neurofilament light chain in human biofluids have relied on immunoassays, which have limited capacity to describe the structure of the protein in CSF and how this might vary in different neurodegenerative diseases. In this study, we characterized and quantified neurofilament light chain species in CSF across neurodegenerative and neuroinflammatory diseases and healthy controls using targeted mass spectrometry. We show that the quantitative immunoprecipitation-tandem mass spectrometry method developed in this study strongly correlates to single-molecule array measurements in CSF across the broad spectrum of neurodegenerative diseases and was replicable across mass spectrometry methods and centres. In summary, we have created an accurate and cost-effective assay for measuring a key biomarker in translational neuroscience research and clinical practice, which can be easily multiplexed and translated into clinical laboratories for the screening and monitoring of neurodegenerative disease or acute brain injury.
  •  
32.
  • Lombardi, Vittoria, et al. (författare)
  • Plasma pNfH levels differentiate SBMA from ALS.
  • 2020
  • Ingår i: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 91:2, s. 215-7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
33.
  • Neth, Bryan J, et al. (författare)
  • Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer's disease: a pilot study.
  • 2020
  • Ingår i: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 86, s. 54-63
  • Tidskriftsartikel (refereegranskat)abstract
    • There is currently no established therapy to treat or prevent Alzheimer's disease. The ketogenic diet supplies an alternative cerebral metabolic fuel, with potential neuroprotective effects. Our goal was to compare the effects of a modified Mediterranean-ketogenic diet (MMKD) and an American Heart Association Diet (AHAD) on cerebrospinal fluid Alzheimer's biomarkers, neuroimaging measures, peripheral metabolism, and cognition in older adults at risk for Alzheimer's. Twenty participants with subjective memory complaints (n= 11) or mild cognitive impairment (n= 9) completed both diets, with 3 participants discontinuing early. Mean compliance rates were 90% for MMKD and 95% for AHAD. All participants had improved metabolic indices following MMKD. MMKD was associated with increased cerebrospinal fluid Aβ42 and decreased tau. There was increased cerebral perfusion and increased cerebral ketone body uptake (11C-acetoacetate PET, in subsample) following MMKD. Memory performance improved after both diets, which may be due to practice effects. Our results suggest that a ketogenic intervention targeted toward adults at risk for Alzheimer's may prove beneficial in the prevention of cognitive decline.
  •  
34.
  • O'Connor, Antoinette, et al. (författare)
  • Plasma amyloid-β ratios in autosomal dominant Alzheimer's disease: the influence of genotype.
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 144:10, s. 2964-2970
  • Tidskriftsartikel (refereegranskat)abstract
    • In vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-β peptides in disease pathogenesis; however, less is known about the behaviour of these mutations in vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-β (Aβ)42:38, Aβ42:40 and Aβ38:40 ratios between presenilin 1 (PSEN1) and amyloid precursor protein (APP) carriers. We examined the relationship between plasma and in vitro models of amyloid-β processing and tested for associations with parental age at onset. Thirty-nine participants were mutation carriers (28 PSEN1 and 11 APP). Age- and sex-adjusted models showed marked differences in plasma amyloid-β between genotypes: higher Aβ42:38 in PSEN1 versus APP (P<0.001) and non-carriers (P<0.001); higher Aβ38:40 in APP versus PSEN1 (P<0.001) and non-carriers (P<0.001); while Aβ42:40 was higher in both mutation groups compared to non-carriers (both P<0.001). Amyloid-β profiles were reasonably consistent in plasma and cell lines. Within the PSEN1 group, models demonstrated associations between Aβ42:38, Aβ42:40 and Aβ38:40 ratios and parental age at onset. In vivo differences in amyloid-β processing between PSEN1 and APP carriers provide insights into disease pathophysiology, which can inform therapy development.
  •  
35.
  •  
36.
  • Ou, Zhen-Yi Andy, et al. (författare)
  • Brain-derived neurotrophic factor in cerebrospinal fluid and plasma is not a biomarker for Huntington's disease.
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain-derived neurotrophic factor (BDNF) is implicated in the survival of striatal neurons. BDNF function is reduced in Huntington's disease (HD), possibly because mutant huntingtin impairs its cortico-striatal transport, contributing to striatal neurodegeneration. The BDNF trophic pathway is a therapeutic target, and blood BDNF has been suggested as a potential biomarker for HD, but BDNF has not been quantified in cerebrospinal fluid (CSF) in HD. We quantified BDNF in CSF and plasma in the HD-CSF cohort (20 pre-manifest and 40 manifest HD mutation carriers and 20 age and gender-matched controls) using conventional ELISAs and an ultra-sensitive immunoassay. BDNF concentration was below the limit of detection of the conventional ELISAs, raising doubt about previous CSF reports in neurodegeneration. Using the ultra-sensitive method, BDNF concentration was quantifiable in all samples but did not differ between controls and HD mutation carriers in CSF or plasma, was not associated with clinical scores or MRI brain volumetric measures, and had poor ability to discriminate controls from HD mutation carriers, and premanifest from manifest HD. We conclude that BDNF in CSF and plasma is unlikely to be a biomarker of HD progression and urge caution in interpreting studies where conventional ELISA was used to quantify CSF BDNF.
  •  
37.
  • Pan, Xiaobei, et al. (författare)
  • Plasma metabolites distinguish dementia with Lewy bodies from Alzheimer's disease: a cross-sectional metabolomic analysis
  • 2024
  • Ingår i: FRONTIERS IN AGING NEUROSCIENCE. - 1663-4365. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIn multifactorial diseases, alterations in the concentration of metabolites can identify novel pathological mechanisms at the intersection between genetic and environmental influences. This study aimed to profile the plasma metabolome of patients with dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), two neurodegenerative disorders for which our understanding of the pathophysiology is incomplete. In the clinical setting, DLB is often mistaken for AD, highlighting a need for accurate diagnostic biomarkers. We therefore also aimed to determine the overlapping and differentiating metabolite patterns associated with each and establish whether identification of these patterns could be leveraged as biomarkers to support clinical diagnosis.MethodsA panel of 630 metabolites (Biocrates MxP Quant 500) and a further 232 metabolism indicators (biologically informative sums and ratios calculated from measured metabolites, each indicative for a specific pathway or synthesis; MetaboINDICATOR) were analyzed in plasma from patients with probable DLB (n = 15; age 77.6 +/- 8.2 years), probable AD (n = 15; 76.1 +/- 6.4 years), and age-matched cognitively healthy controls (HC; n = 15; 75.2 +/- 6.9 years). Metabolites were quantified using a reversed-phase ultra-performance liquid chromatography column and triple-quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode, or by using flow injection analysis in MRM mode. Data underwent multivariate (PCA analysis), univariate and receiving operator characteristic (ROC) analysis. Metabolite data were also correlated (Spearman r) with the collected clinical neuroimaging and protein biomarker data.ResultsThe PCA plot separated DLB, AD and HC groups (R2 = 0.518, Q2 = 0.348). Significant alterations in 17 detected metabolite parameters were identified (q <= 0.05), including neurotransmitters, amino acids and glycerophospholipids. Glutamine (Glu; q = 0.045) concentrations and indicators of sphingomyelin hydroxylation (q = 0.039) distinguished AD and DLB, and these significantly correlated with semi-quantitative measurement of cardiac sympathetic denervation. The most promising biomarker differentiating AD from DLB was Glu:lysophosphatidylcholine (lysoPC a 24:0) ratio (AUC = 0.92; 95%CI 0.809-0.996; sensitivity = 0.90; specificity = 0.90).DiscussionSeveral plasma metabolomic aberrations are shared by both DLB and AD, but a rise in plasma glutamine was specific to DLB. When measured against plasma lysoPC a C24:0, glutamine could differentiate DLB from AD, and the reproducibility of this biomarker should be investigated in larger cohorts.
  •  
38.
  • Parker, Thomas D., et al. (författare)
  • Active elite rugby participation is associated with altered precentral cortical thickness
  • 2023
  • Ingår i: Brain Communications. - 2632-1297. ; 5:6
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing concern that elite rugby participation may negatively influence brain health, but the underlying mechanisms are unclear. Cortical thickness is a widely applied biomarker of grey matter structure, but there is limited research into how it may be altered in active professional rugby players. Cross-sectional MRI data from 44 active elite rugby players, including 21 assessed within 1 week of head injury, and 47 healthy controls were analysed. We investigated how active elite rugby participation with and without sub-acute traumatic brain injury influenced grey matter structure using whole cortex and region of interest cortical thickness analyses. Relationships between cortical thickness and biomarkers of traumatic brain injury, including fractional anisotropy, plasma neurofilament light and glial fibrillary acidic protein, were also examined. In whole-cortex analyses, precentral cortical thickness in the right hemisphere was lower in rugby players compared with controls, which was due to reductions in non-injured players. Post hoc region of interest analyses showed non-injured rugby players had reduced cortical thickness in the inferior precentral sulcal thickness bilaterally (P = 0.005) and the left central sulcus (P = 0.037) relative to controls. In contrast, players in the sub-acute phase of mild traumatic brain injury had higher inferior precentral sulcal cortical thickness in the right hemisphere (P = 0.015). Plasma glial fibrillary acidic protein, a marker of astrocyte activation, was positively associated with right inferior precentral sulcal cortical thickness in injured rugby players (P = 0.0012). Elite rugby participation is associated with localized alterations in cortical thickness, specifically in sulcal motor regions. Sub-acute changes after mild traumatic brain injury are associated with evidence of astrocytic activation. The combination of cortical thickness and glial fibrillary acidic protein may be useful in understanding the pathophysiological relationship between sporting head injury and brain health.
  •  
39.
  • Paterson, Ross W, et al. (författare)
  • Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic
  • 2018
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) biomarkers are increasingly being used to support a diagnosis of Alzheimer's disease (AD). Their clinical utility for differentiating AD from non-AD neurodegenerative dementias, such as dementia with Lewy bodies (DLB) or frontotemporal dementia (FTD), is less well established. We aimed to determine the diagnostic utility of an extended panel of CSF biomarkers to differentiate AD from a range of other neurodegenerative dementias.We used immunoassays to measure conventional CSF markers of amyloid and tau pathology (amyloid beta (Aβ)1-42, total tau (T-tau), and phosphorylated tau (P-tau)) as well as amyloid processing (AβX-38, AβX-40, AβX-42, soluble amyloid precursor protein (sAPP)α, and sAPPβ), large fibre axonal degeneration (neurofilament light chain (NFL)), and neuroinflammation (YKL-40) in 245 patients with a variety of dementias and 30 controls. Patients fulfilled consensus criteria for AD (n=156), DLB (n=20), behavioural variant frontotemporal dementia (bvFTD; n=45), progressive non-fluent aphasia (PNFA; n=17), and semantic dementia (SD; n=7); approximately 10% were pathology/genetically confirmed (n=26). Global tests based on generalised least squares regression were used to determine differences between groups. Non-parametric receiver operating characteristic (ROC) curves and area under the curve (AUC) analyses were used to quantify how well each biomarker discriminated AD from each of the other diagnostic groups (or combinations of groups). CSF cut-points for the major biomarkers found to have diagnostic utility were validated using an independent cohort which included causes of AD (n=104), DLB (n=5), bvFTD (n=12), PNFA (n=3), SD (n=9), and controls (n=10).There were significant global differences in Aβ1-42, T-tau, T-tau/Aβ1-42 ratio, P-tau-181, NFL, AβX-42, AβX-42/X-40 ratio, APPα, and APPβ between groups. At a fixed sensitivity of 85%, AβX-42/X-40 could differentiate AD from controls, bvFTD, and SD with specificities of 93%, 85%, and 100%, respectively; for T-tau/Aβ1-42 these specificities were 83%, 70%, and 86%. AβX-42/X-40 had similar or higher specificity than Aβ1-42. No biomarker or ratio could differentiate AD from DLB or PNFA with specificity >50%. Similar sensitivities and specificities were found in the independent validation cohort for differentiating AD and other dementias and in a pathology/genetically confirmed sub-cohort.CSF AβX-42/X-40 and T-tau/Aβ1-42 ratios have utility in distinguishing AD from controls, bvFTD, and SD. None of the biomarkers tested had good specificity at distinguishing AD from DLB or PNFA.
  •  
40.
  • Paterson, Ross W, et al. (författare)
  • Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes.
  • 2021
  • Ingår i: Brain communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n=34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n=94) and without (n=24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14800pg/ml (400, 32400)], compared to those with encephalopathy [1410pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740pg/ml (507, 881)] and controls [872pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.
  •  
41.
  • Perino, Jacquelyn H, et al. (författare)
  • Neurofilament light chain concentration does not correlate with disease status in Labrador Retrievers affected with idiopathic laryngeal paralysis.
  • 2024
  • Ingår i: American journal of veterinary research. - 1943-5681. ; 85:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate whether plasma neurofilament light chain (pNfL) concentration was altered in Labrador Retrievers with idiopathic laryngeal paralysis (ILP) compared to a control population. A secondary aim was to investigate relationships between age, height, weight, and body mass index in the populations studied.123 dogs: 62 purebred Labrador Retrievers with ILP (ILP Cases) and 61 age-matched healthy medium- to large-breed dogs (Controls).Dogs, recruited from August 1, 2016, to March 1, 2022, were categorized as case or control based on a combination of physical exam, neurologic exam, and history. Blood plasma was collected, and pNfL concentration was measured. pNfL concentrations were compared between ILP Cases and Controls. Covariables including age, height, and weight were collected. Relationships between pNfL and covariables were analyzed within and between groups. In dogs where 2 plasma samples were available from differing time points, pNfL concentrations were measured to evaluate alterations over time.No significant difference in pNfL concentration was found between ILP Cases and Control (P = .36). pNfL concentrations had moderate negative correlations with weight and height in the Control group; other variables did not correlate with pNfL concentrations in ILP Case or Control groups. pNfL concentrations do not correlate with ILP disease status or duration in Labrador Retrievers.There is no evidence that pNfL levels are altered due to ILP disease duration or progression when compared with healthy controls. When evaluating pNfL concentrations in the dog, weight and height should be considered.
  •  
42.
  • Perino, Jackie, et al. (författare)
  • Neurofilament light plasma concentration positively associates with age and negatively associates with weight and height in the dog.
  • 2021
  • Ingår i: Neuroscience letters. - : Elsevier BV. - 1872-7972 .- 0304-3940. ; 744
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma neurofilament light chain (pNfL) concentration is a biomarker for neuroaxonal injury and degeneration and can be used to monitor response to treatment. Spontaneous canine neurodegenerative diseases are a valuable comparative resource for understanding similar human conditions and as large animal treatment models. The features of pNfL concentration in healthy dogs is not well established. We present data reporting basic pNfL concentration trends in the Labrador Retriever breed. Fifty-five Labrador Retrievers were enrolled. pNfL concentration was measured and correlated to age, sex, neuter status, height, weight, body mass index, and coat color. We found increased pNfL with age (P<0.0001), shorter stature (P=0.009) and decreased body weight (P<0.001). These are similar to findings reported in humans. pNfL concentration did not correlate with sex, BMI or coat color. This data further supports findings that pNfL increase with age in a canine population but highlights a need to consider weight and height when determining normal pNfL concentration in canine populations.
  •  
43.
  • Pomara, Nunzio, et al. (författare)
  • Evidence of upregulation of the cholinergic anti-inflammatory pathway in late-life depression.
  • 2021
  • Ingår i: Journal of affective disorders. - : Elsevier BV. - 1573-2517 .- 0165-0327. ; 286, s. 275-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Decreased cholinergic tone associated with increased proinflammatory cytokines has been observed in several human diseases associated with low-grade inflammation. We examined if this attenuated cholinergic anti-inflammatory pathway (CAP) mechanism contributed to increased neuroinflammation observed in depression.We measured cerebrospinal fluid (CSF) cholinergic markers (AChE and BChE activities) in 28 individuals with longstanding late-life major depression (LLMD) and 19 controls and their relationship to central and peripheral levels of pro-inflammatory cytokines (IL-6 and IL-8). Additionally, we examined if these cholinergic indices were related to CSF markers of microglial activation and neuroinflammation (sTREM2 and complement C3).Compared with controls, LLMD patients had a significant reduction in CSF BChE levels. Lower CSF BChE and AChE activities were associated with lower CSF markers of microglial and neuroinflammation (sTREM2 and C3). In addition, in LLMD patients we found an inverse relationship between peripheral marker of inflammation (plasma IL-6) and CSF BChE and AChE levels.Our results suggest an upregulation of the CAP mechanism in LLMD with an elevation in peripheral markers of inflammation and concomitant reduction in markers of glial activation associated with a higher cholinergic tone. Future studies should confirm these findings in a larger sample including individuals with acute and more severe depressive episodes and across all ages.
  •  
44.
  • Quartesan, Ilaria, et al. (författare)
  • Serum Neurofilament Light Chain in Replication Factor Complex Subunit 1 CANVAS and Disease Spectrum
  • 2024
  • Ingår i: Movement Disorders. - 0885-3185 .- 1531-8257. ; 39:1, s. 209-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Biallelic intronic AAGGG repeat expansions in the replication factor complex subunit 1 (RFC1) gene were identified as the leading cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Patients exhibit significant clinical heterogeneity and variable disease course, but no potential biomarker has been identified to date. Objectives: In this multicenter cross-sectional study, we aimed to evaluate neurofilament light (NfL) chain serum levels in a cohort of RFC1 disease patients and to correlate NfL serum concentrations with clinical phenotype and disease severity. Methods: Sixty-one patients with genetically confirmed RFC1 disease and 48 healthy controls (HCs) were enrolled from six neurological centers. Serum NfL concentration was measured using the single molecule array assay technique. Results: Serum NfL concentration was significantly higher in patients with RFC1 disease compared to age- and-sex-matched HCs (P < 0.0001). NfL level showed a moderate correlation with age in both HCs (r = 0.4353, P = 0.0020) and patients (r = 0.4092, P = 0.0011). Mean NfL concentration appeared to be significantly higher in patients with cerebellar involvement compared to patients without cerebellar dysfunction (27.88 vs. 21.84 pg/mL, P = 0.0081). The association between cerebellar involvement and NfL remained significant after controlling for age and sex (β = 0.260, P = 0.034). Conclusions: Serum NfL levels are significantly higher in patients with RFC1 disease compared to HCs and correlate with cerebellar involvement. Longitudinal studies are warranted to assess its change over time.
  •  
45.
  • Rosenkranz, Melissa A, et al. (författare)
  • Neuroimaging and biomarker evidence of neurodegeneration in asthma.
  • 2022
  • Ingår i: The Journal of allergy and clinical immunology. - : Elsevier BV. - 1097-6825 .- 0091-6749. ; 149:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiologic studies have shown that Alzheimer's disease (AD) and related dementias (ADRD) are seen more frequently with asthma, especially with greater asthma severity or exacerbation frequency.To examine the changes in brain structure that may underlie this phenomenon, we examined diffusion-weighted magnetic resonance imaging (dMRI) and blood-based biomarkers of AD (phosphorylated tau 181, p-Tau181), neurodegeneration (neurofilament light chain, NfL), and glial activation (glial fibrillary acidic protein, GFAP).dMRI data were obtained in 111 individuals with asthma, ranging in disease severity from mild to severe, and 135 healthy controls. Regression analyses were used to test the relationships between asthma severity and neuroimaging measures, as well as AD pathology, neurodegeneration, and glial activation, indexed by plasma p-Tau181, NfL, and GFAP, respectively. Additional relationships were tested with cognitive function.Asthma participants had widespread and large-magnitude differences in several dMRI metrics, which were indicative of neuroinflammation and neurodegeneration, and which were robustly associated with GFAP and, to a lesser extent, NfL. The AD biomarker p-Tau181 was only minimally associated with neuroimaging outcomes. Further, asthma severity was associated with deleterious changes in neuroimaging outcomes, which in turn were associated with slower processing speed, a test of cognitive performance.Asthma, particularly when severe, is associated with characteristics of neuroinflammation and neurodegeneration, and may be a potential risk factor for neural injury and cognitive dysfunction. There is a need to determine how asthma may affect brain health and whether treatment directed toward characteristics of asthma associated with these risks can mitigate these effects.
  •  
46.
  • Rossor, Alexander Martin, et al. (författare)
  • A longitudinal and cross-sectional study of plasma neurofilament light chain concentration in Charcot-Marie-Tooth disease.
  • 2022
  • Ingår i: Journal of the peripheral nervous system : JPNS. - : Wiley. - 1529-8027 .- 1085-9489. ; 27:1, s. 50-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in genetic technology and small molecule drug development have paved the way for clinical trials in Charcot-Marie-Tooth disease (CMT); however, the current FDA-approved clinical trial outcome measures are insensitive to detect a meaningful clinical response. There is, therefore, a need to identify sensitive outcome measures or clinically relevant biomarkers. The aim of this study was to further evaluate plasma neurofilament light chain (NFL) as a disease biomarker in CMT. Plasma NFL was measured using SIMOA technology in both a cross-sectional study of a US cohort of CMT patients and longitudinally over 6years in a UK CMT cohort. In addition, plasma NFL was measured longitudinally in two mouse models of CMT2D. Plasma concentrations of NFL were increased in a US cohort of patients with CMT1B, CMT1X and CMT2A but not CMT2E compared with controls. In a separate UK cohort, over a 6-year interval, there was no significant change in plasma NFL concentration in CMT1A or HSN1, but a small but significant reduction in patients with CMT1X. Plasma NFL was increased in wild type compared to GARSC201R mice. There was no significant difference in plasma NFL in GARSP278KY compared to wild type mice. In patients with CMT1A, the small difference in cross-sectional NFL concentration vs healthy controls and the lack of change over time suggests that plasma NFL may lack sufficient sensitivity to detect a clinically meaningful treatment response in adulthood.
  •  
47.
  • Shribman, Samuel, et al. (författare)
  • Plasma Neurofilament Light as a Biomarker of Neurological Involvement in Wilson's Disease.
  • 2021
  • Ingår i: Movement disorders : official journal of the Movement Disorder Society. - : Wiley. - 1531-8257. ; 36:2, s. 503-508
  • Tidskriftsartikel (refereegranskat)abstract
    • Outcomes are unpredictable for neurological presentations of Wilson's disease (WD). Dosing regimens for chelation therapy vary and monitoring depends on copper indices, which do not reflect end-organ damage.To identify a biomarker for neurological involvement in WD.Neuronal and glial-specific proteins were measured in plasma samples from 40 patients and 38 age-matched controls. Patients were divided into neurological or hepatic presentations and those with recent neurological presentations or deterioration associated with non-adherence were subcategorized as having active neurological disease. Unified WD Rating Scale scores and copper indices were recorded.Unlike copper indices, neurofilament light (NfL) concentrations were higher in neurological than hepatic presentations. They were also higher in those with active neurological disease when controlling for severity and correlated with neurological examination subscores in stable patients.NfL is a biomarker of neurological involvement with potential use in guiding chelation therapy and clinical trials for novel treatments. © 2020 University College London. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
  •  
48.
  • Stevenson-Hoare, Joshua, et al. (författare)
  • Plasma biomarkers and genetics in the diagnosis and prediction of Alzheimer's disease.
  • 2023
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 146:2, s. 690-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma biomarkers for Alzheimer's disease-related pathologies have undergone rapid developments during the past few years, and there are now well-validated blood tests for amyloid and tau pathology, as well as neurodegeneration and astrocytic activation. To define Alzheimer's disease with biomarkers rather than clinical assessment, we assessed prediction of research-diagnosed disease status using these biomarkers and tested genetic variants associated with the biomarkers that may reflect more accurately the risk of biochemically defined Alzheimer's disease instead of the risk of dementia. In a cohort of Alzheimer's disease cases (N=1439, mean age 68 years [SD=8.2]) and screened controls (N=508, mean age 82 years [SD=6.8]), we measured plasma concentrations of the 40 and 42 amino acid-long amyloid β fragments (Aβ40 and Aβ42, respectively), tau phosphorylated at amino acid 181 (P-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) using state-of-the-art Single molecule array (Simoa) technology. We tested the relationships between the biomarkers and Alzheimer's disease genetic risk, age at onset, and disease duration. We also conducted a genome-wide association study for association of disease risk genes with these biomarkers. The prediction accuracy of Alzheimer's disease clinical diagnosis by the combination of all biomarkers, APOE and polygenic risk score reached AUC=0.81, with the most significant contributors being ε4, Aβ40 or Aβ42, GFAP and NfL. All biomarkers were significantly associated with age in cases and controls (p<4.3x10-5). Concentrations of the Aβ-related biomarkers in plasma were significantly lower in cases compared with controls, whereas other biomarker levels were significantly higher in cases. In the case-control genome-wide analyses, APOE-ε4 was associated with all biomarkers (p=0.011- 4.78x10-8), except NfL. No novel genome-wide significant SNPs were found in the case-control design; however, in a case-only analysis, we found two independent genome-wide significant associations between the Aβ42/Aβ40 ratio and WWOX and COPG2 genes. Disease prediction modelling by the combination of all biomarkers indicates that the variance attributed to P-tau181 is mostly captured by APOE-ε4, whereas Aβ40, Aβ42, GFAP and NfL biomarkers explain additional variation over and above APOE. We identified novel plausible genome wide-significant genes associated with Aβ42/Aβ40 ratio in a sample which is fifty times smaller than current genome-wide association studies in Alzheimer's disease.
  •  
49.
  • Swann, Owen James, et al. (författare)
  • Fluid biomarkers and risk of neurodegenerative disease in retired athletes with multiple concussions: results from the International Concussion and Head Injury Research Foundation Brain health in Retired athletes Study of Ageing and Impact-Related Neurodegenerative Disease (ICHIRF-BRAIN study).
  • 2022
  • Ingår i: BMJ open sport & exercise medicine. - : BMJ. - 2055-7647. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the association and utility of blood plasma markers of neurodegeneration in a population of retired athletes self-reporting multiple concussions throughout a sporting career. It is hypothesised that this type of athletic history would cause an increased prevalence of neurodegenerative disease, as detected by biomarkers for neurodegenerative disease processes.One hundred and fifty-nine participants were recruited (90 males, 69 females, mean age 61.3±9.13 years), including 121 participants who had retired from playing professional or semiprofessional sports and self-reported ≥1 concussion during their careers (range 1-74; mean concussions=10.7). The control group included 38 age-matched and sex-matched controls, with no history of concussion. We measured neurofilament light (NfL) and tau (neurodegeneration markers), glial fibrillar acidic protein (GFAP) (astrocytic activation marker) and 40 and 42 amino acid-long amyloid beta (Aβ40 and Aβ42) (Alzheimer-associated amyloid pathology markers) concentrations using ultrasensitive single molecule array technology.We found retired athletes reporting one or more concussions throughout an athletic career showed no significant changes in NfL, tau, GFAP and Aβ40 and Aβ42 concentrations in comparison to a control group. No correlations were found between biomarkers and number of concussions (mean=10.7). A moderate correlation was found between NfL concentration and age.No difference in blood concentrations of neurodegeneration markers NfL, tau, GFAP and Aβ40 and Aβ42 was found in retired athletes with a history of concussion compared with controls. An increased prevalence of neurodegenerative diseases is not detected by biomarkers in a population self-reporting multiple concussions.ISRCTN 11312093.
  •  
50.
  • Swift, Imogen J, et al. (författare)
  • A systematic review of progranulin concentrations in biofluids in over 7,000 people-assessing the pathogenicity of GRN mutations and other influencing factors.
  • 2024
  • Ingår i: Alzheimer's Research & Therapy. - 1758-9193. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations.Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data.We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p=0.007) with a trend in non-carriers (p=0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers.These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 60

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy