SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hietala Maiju) srt2:(2020-2021)"

Sökning: WFRF:(Hietala Maiju) > (2020-2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Taheri, Hesam, et al. (författare)
  • One-step twin-screw extrusion process of cellulose fibers and hydroxyethyl cellulose to produce fibrillated cellulose biocomposite
  • 2020
  • Ingår i: Cellulose. - : Springer. - 0969-0239 .- 1572-882X. ; 27:14, s. 8105-8119
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, the defibrillation of cellulose fibers (CF) in the presence of hydroxyethyl cellulose (HEC) within the one-step twin-screw extrusion (TSE) process was examined. The effect of the TSE on cellulose fiber size reduction as well as CF-HEC biocomposites properties were investigated. The results showed that the TSE of cellulose fiber-hydroxyethyl cellulose (CF-HEC) with different cellulose fiber contents (50, 65, and 80 wt%) resulted in partial defibrillation of the cellulose fibers. The fractionation test of the cellulose fibers confirmed that their size was reduced and some fibrillation was observed in microscopy studies. The maximum width reduction of 46% occurred with 80 wt% cellulose content. However, the partial width reduction was also observed with 50% and 65 wt% of cellulose contents. Based on rheological measurements, the shear-viscosity trend of CF-HEC dispersion abruptly dropped when higher fiber content (80 wt%) was extruded, which was related to the fibrillation of the cellulose fibers as well as the reduction of the length. The extruded CF-HEC materials (powder form) were compression molded to prepare the biocomposites with different cellulose fiber contents (50, 65, and 80 wt%). The extruded CF-HEC powders were diluted with addition extra HEC to make biocomposites with lower fiber content (20%, 30%, and 40 wt%) and compression molded to study how the size reduction of the cellulose fibers affected the mechanical properties of biocomposites. The results showed that the E-modulus improved from 0.4 GPa of the neat HEC to 1.6 GPa for the composite with 40 wt% CF. Interestingly, the tensile strength of CF-HEC biocomposite with 40 wt% confirmed a clear improvement from 9.8 to 26.6 MPa, confirming good interaction between HEC and CF. Graphic abstract Preparation (mixing, TSE, and hot-pressing) and characterization (FE-SEM, rheometry, and tensile test) of CF-HEC biocomposite
  •  
2.
  • Taheri, Hesam, et al. (författare)
  • One-Step Twin-Screw Extrusion Process to Fibrillate Deep Eutectic Solvent-Treated Wood to Be Used in Wood Fiber-Polypropylene Composites
  • 2021
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 9:2, s. 883-893
  • Tidskriftsartikel (refereegranskat)abstract
    • Bio-based wood materials are preferable for composites because of their sustainability, but adequately dispersing wood fibers in polymers can be difficult and costly. Our approach was to pretreat the wood with a green solvent system, allowing the composite to be extruded in a single step, simplifying the process, and reducing the overall cost. This study investigates the fibrillation of untreated wood sawdust (W) and deep eutectic solvent-treated wood sawdust (DESW) using a one-step twin-screw extrusion (TSE) process. The results of the analysis of wood fractions and optical microscopy confirmed that the one-step extrusion process resulted in fibrillation of both treated and untreated wood material. The width of the original wood particles was reduced by more than 99% after a one-step TSE for both untreated and DES-treated wood. The size reduction of the DESW was slightly greater than that of the untreated wood, and fibrillation was further confirmed by rheological analysis. The fibrillated wood was then compounded with polypropylene (PP) to produce a wood fiber-polypropylene composite with 50 wt % wood content. The elastic modulus of both untreated and treated extruded composites was higher than that of neat PP. The tensile strength and strain at break for the DESW-PP composite slightly increased in comparison to the untreated W-PP composite. Furthermore, DES treatment of wood resulted in a darker color and increased hydrophobicity of the material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Oksman, Kristiina, 1 ... (2)
Hietala, Maiju (2)
Taheri, Hesam (2)
Liimatainen, Henrikk ... (1)
Suopajärvi, Terhi (1)
Lärosäte
Luleå tekniska universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy