SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hjerne Olle) srt2:(2015-2019)"

Sökning: WFRF:(Hjerne Olle) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angeler, David, et al. (författare)
  • Quantifying the Adaptive Cycle
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.
  •  
2.
  • Griffiths, Jennifer R., et al. (författare)
  • Phytoplankton community interactions and environmental sensitivity in coastal and offshore habitats
  • 2016
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 125:8, s. 1134-1143
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessing the relative importance of environmental conditions and community interactions is necessary for evaluating the sensitivity of biological communities to anthropogenic change. Phytoplankton communities have a central role in aquatic food webs and biogeochemical cycles, therefore, consequences of differing community sensitivities may have broad ecosystem effects. Using two long-term time series (28 and 20 years) from the Baltic Sea, we evaluated coastal and offshore major phytoplankton taxonomic group biovolume patterns over annual and monthly time-scales and assessed their response to environmental drivers and biotic interactions. Overall, coastal phytoplankton responded more strongly to environmental anomalies than offshore phytoplankton, although the specific environmental driver changed with time scale. A trend indicating a state shift in annual biovolume anomalies occurred at both sites and the shift's timing at the coastal site closely tracked other long-term Baltic Sea ecosystem shifts. Cyanobacteria and the autotrophic ciliate Mesodinium rubrum were more strongly related than other groups to this trend with opposing relationships that were consistent across sites. On a monthly scale, biotic interactions within communities were rare and did not overlap between the coastal and offshore sites. Annual scales may be better able to assess general patterns across habitat types in the Baltic Sea, but monthly community dynamics may differ at relatively small spatial scales and consequently respond differently to future change.
  •  
3.
  • Hjerne, Olle, et al. (författare)
  • Climate Driven Changes in Timing, Composition and Magnitude of the Baltic Sea Phytoplankton Spring Bloom
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Spring phytoplankton blooms contribute a substantial part to annual production, support pelagic and benthic secondary production and influence biogeochemical cycles in many temperate aquatic systems. Understanding environmental effects on spring bloom dynamics is important for predicting future climate responses and for managing aquatic systems. We analyzed long-term phytoplankton data from one coastal and one offshore station in the Baltic Sea to uncover trends in timing, composition and size of the spring bloom and its correlations to environmental variables. There was a general trend of earlier phytoplankton blooms by 1-2 weeks over the last 20 years, associated with more sunshine and less windy conditions. High water temperatures were associated with earlier blooms of diatoms and dinoflagellates that dominate the spring bloom, and decreased diatom bloom magnitude. Overall bloom timing, however, was buffered by a temperature and ice related shift in composition from early blooming diatoms to later blooming dinoflagellates and the autotrophic ciliate Mesodinium rubrum. Such counteracting responses to climate change highlight the importance of both general and taxon-specific investigations. We hypothesize that the predicted earlier blooms of diatoms and dinoflagellates as a response to the expected temperature increase in the Baltic Sea might also be counteracted by more clouds and stronger winds. A shift from early blooming and fast sedimenting diatoms to later blooming groups of dinoflagellates and M. rubrum at higher temperatures during the spring period is expected to increase energy transfers to pelagic secondary production and decrease spring bloom inputs to the benthic system, resulting in lower benthic production and reduced oxygen consumption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy