SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hogan Aileen) "

Sökning: WFRF:(Hogan Aileen)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Flood, Peter, et al. (författare)
  • DNA sensor-associated type I interferon signaling is increased in ulcerative colitis and induces JAK-dependent inflammatory cell death in colonic organoids
  • 2022
  • Ingår i: American Journal of Physiology - Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 323:5, s. G439-G460
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control (n = 31), inactive UC (n = 31), active UC (n = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-β), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids. In organoids treated with cytokines alone, or in combination with NLR family pyrin domain-containing 3 (NLRP3), caspase, or JAK inhibitors, cell death was measured, and supernatants were assayed for IL-1β/IL-18/CXCL10. The expression of DNA sensor pathway genes-PYHIN family members [absent in melanoma 2 (AIM2), IFI16, myeloid cell nuclear differentiation antigen (MNDA), and pyrin and HIN domain family member 1 (PYHIN1)- as well as Z-DNA-binding protein 1 (ZBP1), cyclic GMP-AMP synthase (cGAS), and DDX41 was increased in active UC and expressed in a cell type-restricted pattern. Inflammasome genes (CASP1, IL1B, and IL18), type I IFN inducers [stimulator of interferon response cGAMP interactor 1 (STING), TBK1, and IRF3), IFNB1, and type I IFN biomarker genes (OAS2, IFIT2, and MX2) were also increased in active UC. Cotreatment of organoids with IFN-β or IFN-γ in combination with TNFα increased expression of IFI16, ZBP1, CASP1, cGAS, and STING induced cell death and IL-1β/IL-18 secretion. This inflammatory cell death was blocked by the JAK inhibitor tofacitinib but not by inflammasome or caspase inhibitors. Increased type I IFN activity may drive elevated expression of DNA sensor genes and JAK-dependent but inflammasome-independent inflammatory cell death of colonic epithelial cells in UC.NEW & NOTEWORTHY This study found that patients with active UC have significantly increased colonic gene expression of cytosolic DNA sensor, inflammasome, STING, and type I IFN signaling pathways. The type I IFN, IFN-β, in combination with TNF-α induced JAK-dependent but NLRP3 and inflammasome-independent inflammatory cell death of colonic organoids. This novel inflammatory cell death phenotype is relevant to UC immunopathology and may partially explain the efficacy of the JAKinibs tofacitinib and upadacitinib in patients with UC.
  •  
2.
  • Murphy, Eileen F., et al. (författare)
  • Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity
  • 2013
  • Ingår i: Gut. - : BMJ Publishing Group Ltd. - 0017-5749 .- 1468-3288. ; 62:2, s. 220-226
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The gut microbiota is an environmental regulator of fat storage and adiposity. Whether the microbiota represents a realistic therapeutic target for improving metabolic health is unclear. This study explored two antimicrobial strategies for their impact on metabolic abnormalities in murine diet-induced obesity: oral vancomycin and a bacteriocin-producing probiotic (Lactobacillus salivarius UCC118 Bac(+)).DESIGN: Male (7-week-old) C57BL/J6 mice (9-10/group) were fed a low-fat (lean) or a high-fat diet for 20 weeks with/without vancomycin by gavage at 2 mg/day, or with L. salivarius UCC118Bac(+) or the bacteriocin-negative derivative L. salivarius UCC118Bac(-) (each at a dose of 1×10(9) cfu/day by gavage). Compositional analysis of the microbiota was by 16S rDNA amplicon pyrosequencing.RESULTS: Analysis of the gut microbiota showed that vancomycin treatment led to significant reductions in the proportions of Firmicutes and Bacteroidetes and a dramatic increase in Proteobacteria, with no change in Actinobacteria. Vancomycin-treated high-fat-fed mice gained less weight over the intervention period despite similar caloric intake, and had lower fasting blood glucose, plasma TNFα and triglyceride levels compared with diet-induced obese controls. The bacteriocin-producing probiotic had no significant impact on the proportions of Firmicutes but resulted in a relative increase in Bacteroidetes and Proteobacteria and a decrease in Actinobacteria compared with the non-bacteriocin-producing control. No improvement in metabolic profiles was observed in probiotic-fed diet-induced obese mice.CONCLUSION: Both vancomycin and the bacteriocin-producing probiotic altered the gut microbiota in diet-induced obese mice, but in distinct ways. Only vancomycin treatment resulted in an improvement in the metabolic abnormalities associated with obesity thereby establishing that while the gut microbiota is a realistic therapeutic target, the specificity of the antimicrobial agent employed is critical.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy