SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hollender J.) "

Sökning: WFRF:(Hollender J.)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altenburger, R., et al. (författare)
  • Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 512, s. 540-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring. (C) 2015 Elsevier B.V. All rights reserved.
  •  
2.
  • Brack, W., et al. (författare)
  • Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4715 .- 2190-4707. ; 31
  • Tidskriftsartikel (refereegranskat)abstract
    • The present monitoring and assessment of the chemical status of water bodies fail to characterize the likelihood that complex mixtures of chemicals affect water quality. The European Collaborative Project SOLUTIONS suggests that this likelihood can be estimated with effect-based methods (EBMs) complemented by chemical screening and/or impact modeling. These methods should be used to identify the causes of impacted water quality and to develop programs of measures to improve water quality. Along this line of reasoning, effect-based methods are recommended for Water Framework Directive (WFD) monitoring to cover the major modes of action in the universe of environmentally relevant chemicals so as to evaluate improvements of water quality upon implementing the measures. To this end, a minimum battery of bioassays has been recommended including short-term toxicity to algae, Daphnia and fish embryos complemented with in vitro and short-term in vivo tests on mode-of-action specific effects as proxies for long-term toxicity. The likelihood of adverse impacts can be established with effect-based trigger values, which differentiate good from poor water quality in close alignment with Environmental Quality Standards for individual chemicals, while taking into account mixture toxicity. The use of EBMs is suggested in the WFD as one avenue to establish the likelihood of adverse effects due to chemical pollution in European water systems. The present paper has been written as one component of a series of policy briefs to support decisions on water quality monitoring and management under the WFD.
  •  
3.
  • Brack, W., et al. (författare)
  • Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4707 .- 2190-4715. ; 31:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To meet the United Nations (UN) sustainable development goals and the European Union (EU) strategy for a non-toxic environment, water resources and ecosystems management require cost-efficient solutions for prevailing complex contamination and multiple stressor exposures. For the protection of water resources under global change conditions, specific research needs for prediction, monitoring, assessment and abatement of multiple stressors emerge with respect to maintaining human needs, biodiversity, and ecosystem services. Collaborative European research seems an ideal instrument to mobilize the required transdisciplinary scientific support and tackle the large-scale dimension and develop options required for implementation of European policies. Calls for research on minimizing society's chemical footprints in the water-food-energy-security nexus are required. European research should be complemented with targeted national scientific funding to address specific transformation pathways and support the evaluation, demonstration and implementation of novel approaches on regional scales. The foreseeable pressure developments due to demographic, economic and climate changes require solution-oriented thinking, focusing on the assessment of sustainable abatement options and transformation pathways rather than on status evaluation. Stakeholder involvement is a key success factor in collaborative projects as it allows capturing added value, to address other levels of complexity, and find smarter solutions by synthesizing scientific evidence, integrating governance issues, and addressing transition pathways. This increases the chances of closing the value chain by implementing novel solutions. For the water quality topic, the interacting European collaborative projects SOLUTIONS, MARS and GLOBAQUA and the NORMAN network provide best practice examples for successful applied collaborative research including multi-stakeholder involvement. They provided innovative conceptual, modelling and instrumental options for future monitoring and management of chemical mixtures and multiple stressors in European water resources. Advancement of EU water framework directive-related policies has therefore become an option. Bt Aachen Biol, Aachen, Germany.
  •  
4.
  • Mohammed Taha, Hiba, et al. (författare)
  • The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
  • 2022
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 34:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
  •  
5.
  • Salojarvi, Jarkko, et al. (författare)
  • Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch
  • 2017
  • Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 49:6, s. 904-912
  • Tidskriftsartikel (refereegranskat)abstract
    • Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.
  •  
6.
  • Altenburger, R., et al. (författare)
  • Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4715 .- 2190-4707. ; 31
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental water quality monitoring aims to provide the data required for safeguarding the environment against adverse biological effects from multiple chemical contamination arising from anthropogenic diffuse emissions and point sources. Here, we integrate the experience of the international EU-funded project SOLUTIONS to shift the focus of water monitoring from a few legacy chemicals to complex chemical mixtures, and to identify relevant drivers of toxic effects. Monitoring serves a range of purposes, from control of chemical and ecological status compliance to safeguarding specific water uses, such as drinking water abstraction. Various water sampling techniques, chemical target, suspect and non-target analyses as well as an array of in vitro, in vivo and in situ bioanalytical methods were advanced to improve monitoring of water contamination. Major improvements for broader applicability include tailored sampling techniques, screening and identification techniques for a broader and more diverse set of chemicals, higher detection sensitivity, standardized protocols for chemical, toxicological, and ecological assessments combined with systematic evidence evaluation techniques. No single method or combination of methods is able to meet all divergent monitoring purposes. Current monitoring approaches tend to emphasize either targeted exposure or effect detection. Here, we argue that, irrespective of the specific purpose, assessment of monitoring results would benefit substantially from obtaining and linking information on the occurrence of both chemicals and potentially adverse biological effects. In this paper, we specify the information required to: (1) identify relevant contaminants, (2) assess the impact of contamination in aquatic ecosystems, or (3) quantify cause-effect relationships between contaminants and adverse effects. Specific strategies to link chemical and bioanalytical information are outlined for each of these distinct goals. These strategies have been developed and explored using case studies in the Danube and Rhine river basins as well as for rivers of the Iberian Peninsula. Current water quality assessment suffers from biases resulting from differences in approaches and associated uncertainty analyses. While exposure approaches tend to ignore data gaps (i.e., missing contaminants), effect-based approaches penalize data gaps with increased uncertainty factors. This integrated work suggests systematic ways to deal with mixture exposures and combined effects in a more balanced way, and thus provides guidance for future tailored environmental monitoring.
  •  
7.
  • Brack, Werner, et al. (författare)
  • Towards the review of the European Union Water Framework Directive : Recommendations for more efficient assessment and management of chemical contamination in European surface water resources
  • 2017
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 576, s. 720-737
  • Forskningsöversikt (refereegranskat)abstract
    • Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic chemical status assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring, to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment.
  •  
8.
  • Posthuma, L., et al. (författare)
  • Exploring the 'solution space' is key: SOLUTIONS recommends an early-stage assessment of options to protect and restore water quality against chemical pollution
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4707 .- 2190-4715. ; 31:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Present evaluations of chemical pollution in European surface and groundwater bodies focus on problem description and chemical classification of water quality. Surprisingly, relatively low attention has been paid to solutions of chemical pollution problems when those are encountered. Based on evaluations of current practices and available approaches, we suggest that water quality protection, monitoring, assessment and management of chemical pollution can be improved by implementing an early-stage exploration of the 'solution space'. This follows from the innovative paradigm of solution-focused risk assessment, which was developed to improve the utility of risk assessments. The 'solution space' is defined as the set of potential activities that can be considered to protect or restore the water quality against hazards posed by chemical pollution. When using the paradigm, upfront exploration of solution options and selecting options that would be feasible given the local pollution context would result in comparative risk assessment outcomes. The comparative outcomes are useful for selecting optimal measures against chemical pollution for management prioritization and planning. It is recommended to apply the solution-focused risk assessment paradigm to improve the chemical pollution information for river basin management planning. To operationalize this, the present paper describes a still-growing database and strategy to find and select technical abatement and/or non-technical solution options for chemical pollution of surface waters. The solutions database and strategy can be applied to help prevent and reduce water quality problems. Various case studies show that implementing these can be effective, and how solution scenarios can be evaluated for their efficacy by comparative exposure and effect assessment.
  •  
9.
  • Schiffman, E, et al. (författare)
  • Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications : recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group
  • 2014
  • Ingår i: Journal of oral & facial pain and headache. - : Quintessence. - 2333-0384 .- 2333-0376. ; 28:1, s. 6-27
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: The original Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) Axis I diagnostic algorithms have been demonstrated to be reliable. However, the Validation Project determined that the RDC/TMD Axis I validity was below the target sensitivity of ≥ 0.70 and specificity of ≥ 0.95. Consequently, these empirical results supported the development of revised RDC/TMD Axis I diagnostic algorithms that were subsequently demonstrated to be valid for the most common pain-related TMD and for one temporomandibular joint (TMJ) intra-articular disorder. The original RDC/TMD Axis II instruments were shown to be both reliable and valid. Working from these findings and revisions, two international consensus workshops were convened, from which recommendations were obtained for the finalization of new Axis I diagnostic algorithms and new Axis II instruments. METHODS: Through a series of workshops and symposia, a panel of clinical and basic science pain experts modified the revised RDC/TMD Axis I algorithms by using comprehensive searches of published TMD diagnostic literature followed by review and consensus via a formal structured process. The panel's recommendations for further revision of the Axis I diagnostic algorithms were assessed for validity by using the Validation Project's data set, and for reliability by using newly collected data from the ongoing TMJ Impact Project-the follow-up study to the Validation Project. New Axis II instruments were identified through a comprehensive search of the literature providing valid instruments that, relative to the RDC/TMD, are shorter in length, are available in the public domain, and currently are being used in medical settings. RESULTS: The newly recommended Diagnostic Criteria for TMD (DC/TMD) Axis I protocol includes both a valid screener for detecting any pain-related TMD as well as valid diagnostic criteria for differentiating the most common pain-related TMD (sensitivity ≥ 0.86, specificity ≥ 0.98) and for one intra-articular disorder (sensitivity of 0.80 and specificity of 0.97). Diagnostic criteria for other common intra-articular disorders lack adequate validity for clinical diagnoses but can be used for screening purposes. Inter-examiner reliability for the clinical assessment associated with the validated DC/TMD criteria for pain-related TMD is excellent (kappa ≥ 0.85). Finally, a comprehensive classification system that includes both the common and less common TMD is also presented. The Axis II protocol retains selected original RDC/TMD screening instruments augmented with new instruments to assess jaw function as well as behavioral and additional psychosocial factors. The Axis II protocol is divided into screening and comprehensive self report instrument sets. The screening instruments' 41 questions assess pain intensity, pain-related disability, psychological distress, jaw functional limitations, and parafunctional behaviors, and a pain drawing is used to assess locations of pain. The comprehensive instruments, composed of 81 questions, assess in further detail jaw functional limitations and psychological distress as well as additional constructs of anxiety and presence of comorbid pain conditions. CONCLUSION: The recommended evidence-based new DC/TMD protocol is appropriate for use in both clinical and research settings. More comprehensive instruments augment short and simple screening instruments for Axis I and Axis II. These validated instruments allow for identification of patients with a range of simple to complex TMD presentations
  •  
10.
  • Brack, Werner, et al. (författare)
  • The SOLUTIONS project : Challenges and responses for present and future emerging pollutants in land and water resources management
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 503, s. 22-31
  • Tidskriftsartikel (refereegranskat)abstract
    • SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported. with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.
  •  
11.
  • Falås, Per, et al. (författare)
  • Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process.
  • 2013
  • Ingår i: Water Research. - : Elsevier BV. - 1879-2448 .- 0043-1354. ; 47:13, s. 4498-4506
  • Tidskriftsartikel (refereegranskat)abstract
    • Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (±25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac.
  •  
12.
  • Jaeger, Anna, et al. (författare)
  • Using recirculating flumes and a response surface model to investigate the role of hyporheic exchange and bacterial diversity on micropollutant half-lives
  • 2019
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 21:12, s. 2093-2108
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing the understanding of the fate of wastewater-derived organic micropollutants in rivers is crucial to improve risk assessment, regulatory decision making and river management. Hyporheic exchange and sediment bacterial diversity are two factors gaining increasing importance as drivers for micropollutant degradation, but are complex to study in field experiments and usually ignored in laboratory tests aimed to estimate environmental half-lives. Flume mesocosms are useful to investigate micropollutant degradation processes, bridging the gap between the field and batch experiments. However, few studies have used flumes in this context. We present a novel experimental setup using 20 recirculating flumes and a response surface model to study the influence of hyporheic exchange and sediment bacterial diversity on half-lives of the anti-epileptic drug carbamazepine (CBZ) and the artificial sweetener acesulfame (ACS). The effect of bedform-induced hyporheic exchange was tested by three treatment levels differing in number of bedforms (0, 3 and 6). Three levels of sediment bacterial diversity were obtained by diluting sediment from the River Erpe in Berlin, Germany, with sand (1 : 10, 1 : 1000 and 1 : 100 000). Our results show that ACS half-lives were significantly influenced by sediment dilution and number of bedforms. Half-lives of CBZ were higher than ACS, and were significantly affected only by the sediment dilution variable, and thus by bacterial diversity. Our results show that (1) the flume-setup is a useful tool to study the fate of micropollutants in rivers, and that (2) higher hyporheic exchange and bacterial diversity in the sediment can increase the degradation of micropollutants in rivers.
  •  
13.
  • Schymanski, Emma L, et al. (författare)
  • Non-target screening with high-resolution mass spectrometry : critical review using a collaborative trial on water analysis
  • 2015
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Berlin/Heidelberg. - 1618-2642 .- 1618-2650. ; 407:21, s. 6237-6255
  • Forskningsöversikt (refereegranskat)abstract
    • In this article, a dataset from a collaborative non-target screening trial organised by the NORMAN Association is used to review the state-of-the-art and discuss future perspectives of non-target screening using high-resolution mass spectrometry in water analysis. A total of 18 institutes from 12 European countries analysed an extract of the same water sample collected from the River Danube with either one or both of liquid and gas chromatography coupled with mass spectrometry detection. This article focuses mainly on the use of high resolution screening techniques with target, suspect, and non-target workflows to identify substances in environmental samples. Specific examples are given to emphasise major challenges including isobaric and co-eluting substances, dependence on target and suspect lists, formula assignment, the use of retention information, and the confidence of identification. Approaches and methods applicable to unit resolution data are also discussed. Although most substances were identified using high resolution data with target and suspect-screening approaches, some participants proposed tentative non-target identifications. This comprehensive dataset revealed that non-target analytical techniques are already substantially harmonised between the participants, but the data processing remains time-consuming. Although the objective of a "fully-automated identification workflow" remains elusive in the short term, important steps in this direction have been taken, exemplified by the growing popularity of suspect screening approaches. Major recommendations to improve non-target screening include better integration and connection of desired features into software packages, the exchange of target and suspect lists, and the contribution of more spectra from standard substances into (openly accessible) databases.
  •  
14.
  • Tlili, A., et al. (författare)
  • Tolerance Patterns in Stream Biofilms Link Complex Chemical Pollution to Ecological Impacts
  • 2020
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:17, s. 10735-10743
  • Tidskriftsartikel (refereegranskat)abstract
    • Preventing and remedying fresh waters from chemical pollution is a fundamental societal and scientific challenge. With other nonchemical stressors potentially co-occurring, assessing the ecological consequences of reducing chemical loads in the environment is arduous. In this case study, we comparatively assessed the community structure, functions, and tolerance of stream biofilms to micropollutant mixtures extracted from deployed passive samplers at wastewater treatment plant effluents. These biofilms were growing up- and downstream of one upgraded and two nonupgraded wastewater treatment plants before being sampled for analyses. Our results showed a substantial decrease in micropollutant concentrations by 85%, as the result of upgrading the wastewater treatment plant at one of the sampling sites with activated carbon filtration. This decrease was positively correlated with a loss of community tolerance to micropollutants and the recovery of the community structure downstream of the effluent. On the other hand, downstream biofilms at the nonupgraded sites displayed higher tolerance to the extracts than the upstream biofilms. The observed higher tolerance was positively linked to micropollutant levels both in stream water and in biofilm samples, and to shifts in the community structure. Although more investigations of upgraded sites are needed, our findings point toward the suitability of using community tolerance for the retrospective assessment of the risks posed by micropollutants, to assess community recovery, and to relate effects to causes in complex environmental conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Backhaus, Thomas, 19 ... (7)
Hollender, J. (7)
Hollert, H. (5)
Brack, W. (5)
Hollender, Juliane (5)
Munthe, John (4)
visa fler...
Altenburger, R. (4)
Escher, B. I. (4)
Hilscherova, K. (4)
Teodorovic, I. (4)
Müller, C. (3)
Ait-Aissa, S. (3)
de Alda, M. L. (3)
Focks, A. (3)
Slobodnik, J. (3)
Tindall, A. J. (3)
van Gils, J. (3)
Slobodnik, Jaroslav (3)
Cousins, Ian (3)
Posthuma, L. (3)
Krauss, Martin (3)
Brack, Werner (3)
Schulz, Wolfgang (2)
Barceló, D. (2)
Ginebreda, A. (2)
Vrana, Branislav (2)
Faust, M. (2)
Seiler, T. B. (2)
Busch, W. (2)
Kortenkamp, A. (2)
Krauss, M. (2)
Schymanski, E. L. (2)
Segner, H. (2)
Vrana, B. (2)
Zhang, X. W. (2)
Hewitt, L. M. (2)
Umbuzeiro, G. D. (2)
Altenburger, Rolf (2)
Thomaidis, Nikolaos ... (2)
Haglund, Peter (2)
Hollert, Henner (2)
Schymanski, Emma L. (2)
Letzel, Thomas (2)
van Gils, Jos (2)
Dulio, V. (2)
van Wezel, A. (2)
Herraez, David Lopez (2)
Bunke, Dirk (2)
Posthuma, Leo (2)
van den Brink, Paul ... (2)
visa färre...
Lärosäte
Göteborgs universitet (7)
Stockholms universitet (5)
Umeå universitet (3)
IVL Svenska Miljöinstitutet (2)
Uppsala universitet (1)
Lunds universitet (1)
visa fler...
Malmö universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Medicin och hälsovetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy