SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmberg Joakim 1971 ) srt2:(2020-2023)"

Sökning: WFRF:(Holmberg Joakim 1971 ) > (2020-2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Håkan, 1970- (författare)
  • A Co-Simulation Tool Applied to Hydraulic Percussion Units
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this dissertation, a co-simulation tool is presented that is meant to comprise a more comprehensive environment for modelling and simulation of hydraulic percussion units, which are used in hydraulic hammers and rock drills. These units generates the large impact forces, which are needed to demolish concrete structures in the construction industry or to fragment rock when drilling blast holes in mine drifting. This type of machinery is driven by fluid power and is by that dependent of coupled fluid-structure mechanisms for their operation. This tool consists of a 1D fluid system model, a 3D structural mechanic model and an interface to establish the fluid-structure couplings, which has in this work been applied to a hydraulic hammer. This approach will enable virtual prototyping during product development with an ambition to reduce the need for testing of physical prototypes, but also to facilitate more detailed studies of internal mechanisms. The tool has been implemented for two well-known simulation tools, and a co-simulation interface to enable communication between them has been devel-oped. The fluid system is simulated using the Hopsan simulation tool and the structural parts are simulated using the FE-simulation software LS-DYNA. The implementation of the co-simulation interface is based on the Functional Mock-up Interface standard in Hopsan and on the User Defined Feature module in LS-DYNA. The basic functions of the tool were first verified for a simple but relevant model comprising co-simulation of one component, and secondly co-simulation of two components were verified. These models were based on rigid body and linear elastic representation of the structural components. Further, it was experimentally validated using an existing hydraulic hammer product, where the responses from the experiments were compared to the corresponding simulated responses. To investigate the effects from a parameter change, the hammer was operated and simulated at four different running conditions. Dynamic simulation of the sealing gap, which is a fundamental mechanism used for controlling the percussive motion, was implemented to further enhance the simulated responses of the percussion unit. This implementation is based on a parametrisation of the deformed FE-model, where the gap height and the eccentric position are estimated from the deformed geometry in the sealing gap region, and then the parameters are sent to the fluid simulation for a more accurate calculation of the leakage flow. Wear in percussion units is an undesirable type of damage, which may cause significant reduction in performance or complete break-down, and today there are no methodology available to evaluate such damages on virtual prototypes. A method to study wear was developed using the co-simulation tool to simulate the fundamental behaviour of the percussion unit, and the wear routines in LS-DYNA were utilised for the calculation of wear.  
  •  
2.
  • Andersson, Håkan, 1970-, et al. (författare)
  • Simulation of wear in hydraulic percussion units using a co-simulation approach
  • 2023
  • Ingår i: International Journal of Modelling and Simulation. - : Taylor & Francis. - 0228-6203 .- 1925-7082. ; 43:3, s. 265-281
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a developed co-simulation method, which couples 1D-fluid and 3D-structural models, has been utilised to simulate wear in a hydraulic percussion unit. The effect of wear is generally detrimental on performance and lifetime for such units, but can also cause catastrophic failure and breakdown, requiring a total overhaul and replacement of core components. One experiment of standard straight impact was performed to investigate the tolerance against seizure. The percussion unit was operated at successively increasing operating pressures, and the level of wear was registered at each step, until seizure occurred. The co-simulation model was used to replicate the running conditions from the experiment to simulate the structural response to be used as input for the wear routine to calculate the wear depth. The wear pattern from the simulations corresponds well to the wear pattern from the experiment. Further, the effect of a misaligned impact on wear development was also studied, as this is a loading situation that typically occurs for hydraulic percussion units. The study demonstrates that the simulation method used has a potential for simulating wear and predicting seizure in hydraulic percussion units.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy