SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holst Jutta) srt2:(2010-2014)"

Sökning: WFRF:(Holst Jutta) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hentschel, Rainer, et al. (författare)
  • Simulation of stand transpiration based on a xylem water flow model for individual trees
  • 2013
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 182, s. 31-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the water exchange between a forest stand and the atmosphere is of major interest for the prediction of future growth conditions and the planning of silvicultural treatments. In the present study, we address (i) the uncertainties of sap flow estimations at the tree level and (ii) the performance of the simulation of stand transpiration. Terrestrial laser scan images (TLS) of a mature beech stand (Fagus sylvatica L) in Southwestern Germany serve as input data for a representation of the aboveground tree architecture of the study stand. In the single-tree xylem water flow model (XWF) used here, 98 beech trees are represented by 3D graphs of connected cylinders with explicit orientation and size. Beech-specific hydraulic parameters and physical properties of individual trees determine the physiological response of the tree model to environmental conditions. The XWF simulations are performed without further calibration to sap flow measurements. The simulations reliably match up with sap flow estimates derived from sap flow density measurements. The density measurements strongly depend on individual sapwood area estimates and the characterization of radial sap flow density gradients with xylem depth. Although the observed pure beech stand is even-aged, we observe a high variability in sap flow rates among the individual trees. Simulations of the individual sap flow rates show a corresponding variability due to the distribution of the crown projection area in the canopy and the different proportions of sapwood area. Stand transpiration is obtained by taking the sum of 98 single-tree simulations and the corresponding sap flow estimations, which are then compared with the stand-level root water uptake model (RWU model) simulation. Using the RWU model results in a 35% higher simulation of seasonal stand transpiration relative to the XWF model. These findings demonstrate the importance of individual tree dimensions and stand heterogeneity assessments in estimating stand water use. As a consequence of species-specific model parameterization and precise TLS-based stand characterization, the XWF model is applicable to various sites and tree species and is a promising tool for predicting the possible water supply limitations of pure and mixed forest stands. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Lee, Hyunjung, et al. (författare)
  • Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons
  • 2013
  • Ingår i: Advances in Meteorology. - : Hindawi Limited. - 1687-9309 .- 1687-9317.
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing heat will be a significant problem for Central European cities in the future. Shading devices are discussed as a method to mitigate heat stress on citizens. To analyze the physical processes, which are characteristic of shading in terms of urban human-biometeorology, experimental investigations on the thermal effects of shading by a building and shading by tree canopies were conducted in Freiburg (Southwest Germany) during typical Central European summer weather. Urban human-biometeorology stands for the variables air temperature T-a, mean radiant temperature T-mrt, and physiologically equivalent temperature PET, that is the human-biometeorological concept to assess the thermal environment which was applied. The measuring setup consists of specific human-biometeorological stations, which enable the direct or indirect determination of T-a, T-mrt, and PET. With respect to both shading devices, the T-a reduction did not exceed 2 C, while PET as a measure for human heat stress was lowered by two thermal sensation steps according to the ASHRAE scale. As T-mrt has the role of a key variable for outdoor thermal comfort during Central European summer weather, all radiant flux densities relevant to the determination of T-mrt were directly measured and analyzed in detail. The results show the crucial significance of the horizontal radiant flux densities for T-mrt and consequently PET.
  •  
3.
  • Peltola, O., et al. (författare)
  • Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:12, s. 3163-3186
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying turbulent conditions. The moderate CH4 fluxes observed at the location, of the order of 25 nmol m(-2) s(-1), provided a suitable signal for testing the instruments' performance. Generally, all analysers tested were able to quantify the concentration fluctuations at the frequency range relevant for turbulent exchange and were able to deliver high-quality data. The tested cavity ringdown spectrometer (CRDS) instruments from Picarro, models G2311-f and G1301-f, were superior to other CH4 analysers with respect to instrumental noise. As an open-path instrument susceptible to the effects of rain, the LI-COR LI-7700 achieved lower data coverage and also required larger density corrections; however, the system is especially useful for remote sites that are restricted in power availability. In this study the open-path LI-7700 results were compromised due to a data acquisition problem in our data-logging setup. Some of the older closed-path analysers tested do not measure H2O concentrations alongside CH4 (i.e. FMA1 and DLT-100 by Los Gatos Research) and this complicates data processing since the required corrections for dilution and spectroscopic interactions have to be based on external information. To overcome this issue, we used H2O mole fractions measured by other gas analysers, adjusted them with different methods and then applied them to correct the CH4 fluxes. Following this procedure we estimated a bias of the order of 0.1 g (CH4) m(-2) (8% of the measured mean flux) in the processed and corrected CH4 fluxes on a monthly scale due to missing H2O concentration measurements. Finally, cumulative CH4 fluxes over 14 days from three closed-path gas analysers, G2311-f (Picarro Inc.), FGGA (Los Gatos Research) and FMA2 (Los Gatos Research), which were measuring H2O concentrations in addition to CH4, agreed within 3% (355-367 mg (CH4) m(-2)) and were not clearly different from each other, whereas the other instruments derived total fluxes which showed small but distinct differences (+/- 10 %, 330-399 mg (CH4) m(-2)).
  •  
4.
  • Podgrajsek, Eva, et al. (författare)
  • Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 11, s. 4225-4233
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluxes of carbon dioxide (CO2) and methane (CH4) from lakes may have a large impact on the magnitude of the terrestrial carbon sink. Traditionally lake fluxes have been measured using the floating chamber (FC) technique; however, several recent studies use the eddy covariance (EC) method. We present simultaneous flux measurements using both methods at lake Tämnaren in Sweden during field campaigns in 2011 and 2012. Only very few similar studies exist. For CO2 flux, the two methods agree relatively well during some periods, but deviate substantially at other times. The large discrepancies might be caused by heterogeneity of partial pressure of CO2 (pCO2w) in the EC flux footprint. The methods agree better for CH4 fluxes. It is, however, clear that short-term discontinuous FC measurements are likely to miss important high flux events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy