SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ingvast Sofie) srt2:(2020-2023)"

Sökning: WFRF:(Ingvast Sofie) > (2020-2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Puuvuori, Emmi, et al. (författare)
  • PET-CT imaging of pulmonary inflammation using [Ga-68]Ga-DOTA-TATE
  • 2022
  • Ingår i: EJNMMI Research. - : Springer Nature. - 2191-219X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose In the characterization of severe lung diseases, early detection of specific inflammatory cells could help to monitor patients' response to therapy and increase chances of survival. Macrophages contribute to regulating the resolution and termination of inflammation and have increasingly been of interest for targeted therapies. [Ga-68]Ga-DOTA-TATE is an established clinical radiopharmaceutical targeting somatostatin receptor subtype 2 (SSTR 2). Since activated macrophages (M1) overexpress SSTR 2, the aim of this study was to investigate the applicability of [Ga-68]Ga-DOTA-TATE for positron emission tomography (PET) imaging of M1 macrophages in pulmonary inflammation. Methods Inflammation in the pig lungs was induced by warm saline lavage followed by injurious ventilation in farm pigs (n = 7). Healthy pigs (n = 3) were used as control. A 60-min dynamic PET scan over the lungs was performed after [Ga-68]Ga-DOTA-TATE injection and [F-18]FDG scan was executed afterward for comparison. The uptake of both tracers was assessed as mean standardized uptake values (SUVmean) 30-60-min post-injection. The PET scans were followed by computed tomography (CT) scans, and the Hounsfield units (HU) were quantified of the coronal segments. Basal and apical segments of the lungs were harvested for histology staining. A rat lung inflammation model was also studied for tracer specificity using lipopolysaccharides (LPS) by oropharyngeal aspiration. Organ biodistribution, ex vivo autoradiography (ARG) and histology samples were conducted on LPS treated, octreotide induced blocking and control healthy rats. Results The accumulation of [Ga-68]Ga-DOTA-TATE on pig lavage model was prominent in the more severely injured dorsal segments of the lungs (SUVmean = 0.91 +/- 0.56), compared with control animals (SUVmean = 0.27 +/- 0.16, p < 0.05). The tracer uptake corresponded to the damaged areas assessed by CT and histology and were in line with HU quantification. The [Ga-68]Ga-DOTA-TATE uptake in LPS treated rat lungs could be blocked and was significantly higher compared with control group. Conclusion The feasibility of the noninvasive assessment of tissue macrophages using [Ga-68]Ga-DOTA-TATE/PET was demonstrated in both porcine and rat lung inflammation models. [Ga-68]Ga-DOTA-TATE has a great potential to be used to study the role and presence of macrophages in humans in fight against severe lung diseases.
  •  
2.
  • Puuvuori, Emmi, et al. (författare)
  • PET imaging of neutrophil elastase with 11C-GW457427 in Acute Respiratory Distress Syndrome in pigs
  • 2023
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine and Molecular Imaging. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 64:3, s. 423-429
  • Tidskriftsartikel (refereegranskat)abstract
    • Today, there is a lack of clinically available imaging techniques to detect and quantify specific immune cell populations. Neutrophils are one of the first immune cells at the site of inflammation, and they secrete the serine protease neutrophil elastase (NE), which is crucial in the fight against pathogens. However, the prolonged lifespan of neutrophils increases the risk that patients will develop severe complications, such as acute respiratory distress syndrome (ARDS). Here, we evaluated the novel radiolabeled NE inhibitor 11C-GW457427 in a pig model of ARDS, for detection and quantification of neutrophil activity in the lungs. Methods: ARDS was induced by intravenous administration of oleic acid to 5 farm pigs, and 4 were considered healthy controls. The severity of ARDS was monitored by clinical parameters of lung function and plasma biomarkers. Each pig was studied with 11C-GW457427 and PET/CT, before and after pretreatment with the NE inhibitor GW311616 to determine in vivo binding specificity. PET image data were analyzed as SUVs and correlated with immunohistochemical staining for NE in biopsies. Results: The binding of 11C-GW457427 was increased in pig lungs with induced ARDS (median SUVmean, 1.91; interquartile range [IQR], 1.67-2.55) compared with healthy control pigs (P < 0.05 and P = 0.03, respectively; median SUVmean, 1.04; IQR, 0.66-1.47). The binding was especially strong in lung regions with high levels of NE and ongoing inflammation, as verified by immunohisto-chemistry. The binding was successfully blocked by pretreatment of an NE inhibitor drug, which demonstrated the in vivo specificity of 11C-GW457427 (P < 0.05 and P = 0.04, respectively; median SUVmean, 0.60; IQR, 0.58-0.77). The binding in neutrophil-rich tissues such as bone marrow (P < 0.05 and P = 0.04, respectively; baseline median SUVmean, 5.01; IQR, 4.48-5.49; block median SUVmean, 1.57; IQR, 0.95-1.85) and spleen (median SUVmean, 2.14; IQR, 1.19-2.36) was also high in all pigs. Conclusion: 11C-GW457427 binds to NE in a porcine model of oleic acid-induced lung inflammation in vivo, with a specific increase in regional lung, bone marrow, and spleen SUV. 11C-GW457427 is a promising tool for localizing, tracking, and quantifying neutrophil-facilitated inflammation in clinical diagnostics and drug development.
  •  
3.
  • Rosestedt, Maria, et al. (författare)
  • Radiolabelling and positron emission tomography imaging of a high-affinity peptide binder to collagen type 1
  • 2021
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier. - 0969-8051 .- 1872-9614. ; 93, s. 54-62
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionPathological formation of fibrosis, is an important feature in many diseases. Fibrosis in liver and pancreas has been associated to metabolic disease including type 1 and 2 diabetes. The current methods for detecting and diagnosing fibrosis are either invasive, or their sensitivity to detect fibrosis in early stage is limited. Therefore, it is crucial to develop non-invasive methods to detect, stage and study the molecular processes that drive the pathology of liver fibrosis. The peptide LRELHLNNN was previously identified as a selective binder to collagen type I with an affinity of 170 nM. Radiolabelled LRELHLNNN thus constitute a potential PET tracer for fibrosis.MethodLRELHLNNN was conjugated to a DOTA/NOTA moiety via a PEG2-linker. DOTA-PEG2-LRELHLNNN was labelled with Gallium-68 and NOTA- PEG2-LRELHLNNN with aluminium fluoride-18. Biodistribution of [68Ga]Ga-DOTA-PEG2-LRELHLNNN and [18F]AlF-NOTA-PEG2-LRELHLNNN was performed in healthy rats ex vivo and in vivo. The 68Ga-labelled analogue was evaluated in a mouse model of liver fibrosis by PET/MRI-imaging. The human predicted dosimetry of the tracers was extrapolated from rat ex vivo biodistribution studies at 10, 20, 40, 60, 120, 180 min (only fluoride-18) post-injection.ResultsThe peptides were successfully radiolabelled with gallium-68 and aluminium fluoride-18, respectively. The biodistribution of [68Ga]Ga-DOTA-PEG2-LRELHLNNN and [18F]AlF-NOTA-PEG2-LRELHLNNN was favorable showing rapid clearance and low background binding in organs where fibrosis may develop. Binding of [68Ga]Ga-DOTA-PEG2-LRELHLNNN to fibrotic liver was higher than surrounding tissues in mice with induced hepatic fibrosis. However, the binding was in the range of SUV 0.3, indicating limited targeting of the tracer to liver. The extrapolated human predicted dosimetric profiles of [68Ga]Ga-DOTA-PEG2-LRELHLNNN and [18F]AlF-NOTA-PEG2-LRELHLNNN were beneficial, potentially allowing at least three PET examinations annually.ConclusionsWe describe the modification, radiolabelling and evaluation of the collagen type I binding peptide LRELHLNNN. The resulting radiotracer analogues demonstrated suitable biodistribution and dosimetry. [68Ga]Ga-DOTA-PEG2-LRELHLNNN exhibited binding to hepatic fibrotic lesions and is a promising tool for PET imaging of fibrosis.Advances in knowledgeValidation of a new collagen targeting PET tracer.Implications for patient careEarly, non-invasive diagnosis and stratification of fibrosis in order to improve the diagnosis, staging and treatment of patients with diseases involving fibrosis.
  •  
4.
  • Tegehall, Angelica, et al. (författare)
  • A decisive bridge between innate immunity and the pathognomonic morphological characteristics of type 1 diabetes demonstrated by instillation of heat-inactivated bacteria in the pancreatic duct of rats
  • 2022
  • Ingår i: Acta Diabetologica. - : Springer Nature. - 0940-5429 .- 1432-5233. ; 59:8, s. 1011-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Periductal inflammation and accumulation of granulocytes and monocytes in the periislet area and in the exocrine pancreas is observed within hours after instillation of heat-inactivated bacteria in the ductal compartment of the pancreas in healthy rats. The present investigation was undertaken to study how the acute inflammation developed over time. Methods Immunohistochemical evaluation of the immune response triggered by instillation of heat-inactivated bacteria in the ductal compartment in rats. Results After three weeks, the triggered inflammation had vanished and pancreases showed normal morphology. However, a distinct accumulation of both CD4+ and CD8+ T cells within and adjacent to affected islets was found in one-third of the rats instilled with heat-inactivated E. faecalis, mimicking the insulitis seen at onset of human T1D. As in T1D, this insulitis affected a minority of islets and only certain lobes of the pancreases. Notably, a fraction of the T cells expressed the CD103 antigen, mirroring the recently reported presence of tissue resident memory T cells in the insulitis in humans with recent onset T1D. Conclusions The results presented unravel a previously unknown interplay between innate and acquired immunity in the formation of immunopathological events indistinguishable from those described in humans with recent onset T1D.
  •  
5.
  • Wegrzyniak, Olivia, et al. (författare)
  • Imaging of fibrogenesis in the liver by [18F]TZ-Z0959 : an Affibody molecule targeting platelet derived growth factor receptor β
  • 2023
  • Ingår i: EJNMMI Radiopharmacy and Chemistry. - : Springer Nature. - 2365-421X. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Platelet-derived growth factor receptor beta (PDGFRβ) is a receptor overexpressed on activated hepatic stellate cells (aHSCs). Positron emission tomography (PET) imaging of PDGFRβ could potentially allow the quantification of fibrogenesis in fibrotic livers. This study aims to evaluate a fluorine-18 radiolabeled Affibody molecule ([18F]TZ-Z09591) as a PET tracer for imaging liver fibrogenesis. Results: In vitro specificity studies demonstrated that the trans-Cyclooctenes (TCO) conjugated Z09591 Affibody molecule had a picomolar affinity for human PDGFRβ. Biodistribution performed on healthy rats showed rapid clearance of [18F]TZ-Z09591 through the kidneys and low liver background uptake. Autoradiography (ARG) studies on fibrotic livers from mice or humans correlated with histopathology results. Ex vivo biodistribution and ARG revealed that [18F]TZ-Z09591 binding in the liver was increased in fibrotic livers (p = 0.02) and corresponded to binding in fibrotic scars. Conclusions: Our study highlights [18F]TZ-Z09591 as a specific tracer for fibrogenic cells in the fibrotic liver, thus offering the potential to assess fibrogenesis clearly. Graphical abstract: [Figure not available: see fulltext.]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy