SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Irbäck Anders) srt2:(2015-2019)"

Sökning: WFRF:(Irbäck Anders) > (2015-2019)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bille, Anna, et al. (författare)
  • Equilibrium simulation of trp-cage in the presence of protein crowders.
  • 2015
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 143:17
  • Tidskriftsartikel (refereegranskat)abstract
    • While steric crowders tend to stabilize globular proteins, it has been found that protein crowders can have an either stabilizing or destabilizing effect, where a destabilization may arise from nonspecific attractive interactions between the test protein and the crowders. Here, we use Monte Carlo replica-exchange methods to explore the equilibrium behavior of the miniprotein trp-cage in the presence of protein crowders. Our results suggest that the surrounding crowders prevent trp-cage from adopting its global native fold, while giving rise to a stabilization of its main secondary-structure element, an α-helix. With the crowding agent used (bovine pancreatic trypsin inhibitor), the trp-cage-crowder interactions are found to be specific, involving a few key residues, most of which are prolines. The effects of these crowders are contrasted with those of hard-sphere crowders.
  •  
2.
  • Bille, Anna, et al. (författare)
  • Peptide folding in the presence of interacting protein crowders
  • 2016
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 144:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Using Monte Carlo methods, we explore and compare the effects of two protein crowders, BPTI and GB1, on the folding thermodynamics of two peptides, the compact helical trp-cage and the β-hairpin-forming GB1m3. The thermally highly stable crowder proteins are modeled using a fixed backbone and rotatable side-chains, whereas the peptides are free to fold and unfold. In the simulations, the crowder proteins tend to distort the trp-cage fold, while having a stabilizing effect on GB1m3. The extent of the effects on a given peptide depends on the crowder type. Due to a sticky patch on its surface, BPTI causes larger changes than GB1 in the melting properties of the peptides. The observed effects on the peptides stem largely from attractive and specific interactions with the crowder surfaces, and differ from those seen in reference simulations with purely steric crowder particles.
  •  
3.
  • Bille, Anna, et al. (författare)
  • Stability and Local Unfolding of SOD1 in the Presence of Protein Crowders
  • 2019
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 123:9, s. 1920-1930
  • Tidskriftsartikel (refereegranskat)abstract
    • Using NMR and Monte Carlo (MC) methods, we investigate the stability and dynamics of superoxide dismutase 1 (SOD1) in homogeneous crowding environments, where either bovine pancreatic trypsin inhibitor (BPTI) or the B1 domain of streptococcal protein G (PGB1) serves as a crowding agent. By NMR, we show that both crowders, and especially BPTI, cause a drastic loss in the overall stability of SOD1 in its apo monomeric form. Additionally, we determine chemical shift perturbations indicating that SOD1 interacts with the crowder proteins in a residue-specific manner that further depends on the identity of the crowding protein. Furthermore, the specificity of SOD1-crowder interactions is reciprocal: chemical shift perturbations on BPTI and PGB1 identify regions that interact preferentially with SOD1. By MC simulations, we investigate the local unfolding of SOD1 in the absence and presence of the crowders. We find that the crowders primarily interact with the long flexible loops of the folded SOD1 monomer. The basic mechanisms by which the SOD1 β-barrel core unfolds remain unchanged when adding the crowders. In particular, both with and without the crowders, the second β-sheet of the barrel is more dynamic and unfolding-prone than the first. Notably, the MC simulations (exploring the early stages of SOD1 unfolding) and the NMR experiments (under equilibrium conditions) identify largely the same set of PGB1 and BPTI residues as prone to form SOD1 contacts. Thus, contacts stabilizing the unfolded state of SOD1 in many cases appear to form early in the unfolding reaction.
  •  
4.
  • Fogelmark, Karl, et al. (författare)
  • Fitting a function to time-dependent ensemble averaged data
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.
  •  
5.
  • Irbäck, Anders, et al. (författare)
  • Protein folding/unfolding in the presence of interacting macromolecular crowders
  • 2017
  • Ingår i: European Physical Journal: Special Topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 226:4, s. 627-638
  • Forskningsöversikt (refereegranskat)abstract
    • Recent years have seen an increasing number of biophysical studies of proteins being conducted in cells and concentrated protein solutions. In these experiments, compared to dilute-solution data, both stabilization and destabilization of globular proteins have been observed, which cannot be explained in terms of volume exclusion alone. For a fundamental understanding of the observed effects, there is a need for computational modeling beyond the level of hard-sphere crowders. This mini-review discusses recent efforts to simulate folding/unfolding properties of proteins in the presence of explicit macromolecular crowders. A Monte Carlo-based approach by us is described, which we recently applied to study the equilibrium folding thermodynamics of two peptides in the presence of explicit protein crowders.
  •  
6.
  • Irbäck, Anders, et al. (författare)
  • Thermodynamics of amyloid formation and the role of intersheet interactions
  • 2015
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 143:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The self-assembly of proteins into beta-sheet-rich amyloid fibrils has been observed to occur with sigmoidal kinetics, indicating that the system initially is trapped in a metastable state. Here, we use a minimal lattice-based model to explore the thermodynamic forces driving amyloid formation in a finite canonical (NVT) system. By means of generalized-ensemble Monte Carlo techniques and a semi-analytical method, the thermodynamic properties of this model are investigated for different sets of intersheet interaction parameters. When the interactions support lateral growth into multi-layered fibrillar structures, an evaporation/condensation transition is observed, between a supersaturated solution state and a thermodynamically distinct state where small and large fibril-like species exist in equilibrium. Intermediate-size aggregates are statistically suppressed. These properties do not hold if aggregate growth is one-dimensional. (C) 2015 AIP Publishing LLC.
  •  
7.
  • Nilsson, Daniel, et al. (författare)
  • Markov modeling of peptide folding in the presence of protein crowders
  • 2018
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 148:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We use Markov state models (MSMs) to analyze the dynamics of a β-hairpin-forming peptide in Monte Carlo (MC) simulations with interacting protein crowders, for two different types of crowder proteins [bovine pancreatic trypsin inhibitor (BPTI) and GB1]. In these systems, at the temperature used, the peptide can be folded or unfolded and bound or unbound to crowder molecules. Four or five major free-energy minima can be identified. To estimate the dominant MC relaxation times of the peptide, we build MSMs using a range of different time resolutions or lag times. We show that stable relaxation-time estimates can be obtained from the MSM eigenfunctions through fits to autocorrelation data. The eigenfunctions remain sufficiently accurate to permit stable relaxation-time estimation down to small lag times, at which point simple estimates based on the corresponding eigenvalues have large systematic uncertainties. The presence of the crowders has a stabilizing effect on the peptide, especially with BPTI crowders, which can be attributed to a reduced unfolding rate ku, while the folding rate kf is left largely unchanged.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy