SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Itoh S.) srt2:(2000-2004)"

Sökning: WFRF:(Itoh S.) > (2000-2004)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Imanishi, T., et al. (författare)
  • Integrative annotation of 21,037 human genes validated by full-length cDNA clones
  • 2004
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 2:6, s. 856-875
  • Tidskriftsartikel (refereegranskat)abstract
    • The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology.
  •  
2.
  •  
3.
  • Gabrielsson, Britt, 1957, et al. (författare)
  • Depot-specific expression of fibroblast growth factors in human adipose tissue.
  • 2002
  • Ingår i: Obesity research. - : Wiley. - 1071-7323 .- 1550-8528. ; 10:7, s. 608-16
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the expression of several fibroblast growth factors (FGFs) and FGF-receptors (FGFRs) in human adipose tissue and adipose-tissue cell fractions obtained from both subcutaneous (sc) and omental (om) depots.
  •  
4.
  • Goumans, MJ, et al. (författare)
  • Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFP/ALK5 signaling
  • 2003
  • Ingår i: Molecular Cell. - 1097-4164. ; 12:4, s. 817-828
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming growth factor-beta (TGFbeta) regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways. Activin receptor-like kinase-1 (ALK1) induces Smad1/5 phosphorylation, leading to an increase in endothelial cell proliferation and migration, while ALK5 promotes Smad2/3 activation and inhibits both processes. Here, we report that ALK5 is important for TGFbeta/ALK1 signaling; endothelial cells lacking ALK5 are deficient in TGFbeta/ALK1-induced responses. More specifically, we show that ALK5 mediates a TGFbeta-dependent recruitment of ALK1 into a TGFbeta receptor complex and that the ALK5 kinase activity is required for optimal ALK1 activation. TGFbeta type II receptor is also required for ALK1 activation by TGFbeta. Interestingly, ALK1 not only induces a biological response opposite to that of ALK5 but also directly antagonizes ALK5/Smad signaling.
  •  
5.
  • Goumans, MJ, et al. (författare)
  • Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors
  • 2002
  • Ingår i: EMBO Journal. - : Wiley. - 1460-2075. ; 21:7, s. 1743-1753
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of mice lacking specific components of the transforming growth factor-beta (TGF-beta) signal tranduction pathway shows that TGF-beta is a key player in the development and physiology of the cardiovascular system. Both pro- and anti-angiogenic properties have been ascribed to TGF-beta, for which the molecular mechanisms are unclear. Here we report that TGF-beta can activate two distinct type I receptor/Smad signalling pathways with opposite effects. TGF-beta induces phosphorylation of Smad1/5 and Smad2 in endothelial cells and these effects can be blocked upon selective inhibition of ALK1 or ALK5 expression, respectively. Whereas the TGF-beta/ALK5 pathway leads to inhibition of cell migration and proliferation, the TGF-beta/ ALK1 pathway induces endothelial cell migration and proliferation. We identified genes that are induced specifically by TGF-beta-mediated ALK1 or ALK5 activation. Id1 was found to mediate the TGF-beta/ALK1-induced (and Smad-dependent) migration, while induction of plasminogen activator inhibitor-1 by activated ALK5 may contribute to the TGF-beta-induced maturation of blood vessels. Our results suggest that TGF-beta regulates the activation state of the endothelium via a fine balance between ALK5 and ALK1 signalling.
  •  
6.
  • Pardali, E, et al. (författare)
  • Smad and AML proteins synergistically confer transforming growth factor beta1 responsiveness to human germ-line IgA genes.
  • 2000
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 275:5, s. 3552-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription of germ-line immunoglobulin heavy chain genes conditions them to participate in isotype switch recombination. Transforming growth factor-beta1 (TGF-beta1) stimulates promoter elements located upstream of the IgA1 and IgA2 switch regions, designated Ialpha1 and Ialpha2, and contributes to the development of IgA responses. We demonstrate that intracellular Smad proteins mediate activation of the Ialpha1 promoter by TGF-beta. TGF-beta type 1 receptor (ALK-5), activin type IB receptor (ALK-4), and the "orphan" ALK-7 trans-activate the Ialpha1 promoter, thus raising the possibility that other members of the TGF-beta superfamily can also modulate IgA synthesis. Smads physically interact with the AML family of transcription factors and cooperate with them to activate the Ialpha1 promoter. The Ialpha1 element provides a canapé of interspersed high and low affinity sites for Smad and AML factors, some of which are indispensable for TGF-beta responsiveness. While AML.Smad complexes are formed in the cytoplasm of DG75 and K562 cells constitutively, only after TGF-beta receptor activation, novel Smad3.Smad4.AML complexes are detected in nuclear extracts by EMSA with Ialpha1 promoter-derived probes. Considering the wide range of biological phenomena that AMLs and Smads regulate, the physical/functional interplay between them has implications that extend beyond the regulation of class switching to IgA.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy