SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jauhiainen Suvi) "

Search: WFRF:(Jauhiainen Suvi)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Globisch, Maria A., et al. (author)
  • Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation
  • 2022
  • In: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:20, s. 2154-2169
  • Journal article (peer-reviewed)abstract
    • Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.
  •  
2.
  • Jauhiainen, Suvi, et al. (author)
  • Axon Guidance-Related Factor FLRT3 Regulates VEGF-Signaling and Endothelial Cell Function
  • 2019
  • In: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 10
  • Journal article (peer-reviewed)abstract
    • Vascular endothelial growth factors (VEGFs) are key mediators of endothelial cell (EC) function in angiogenesis. Emerging knowledge also supports the involvement of axon guidance-related factors in the regulation of angiogenesis and vascular patterning. In the current study, we demonstrate that fibronectin and leucine-rich transmembrane protein-3 (FLRT3), an axon guidance-related factor connected to the regulation of neuronal cell outgrowth and morphogenesis but not to VEGF-signaling, was upregulated in ECs after VEGF binding to VEGFR2. We found that FLRT3 exhibited a transcriptionally paused phenotype in non-stimulated human umbilical vein ECs. After VEGF-stimulation its nascent RNA and mRNA-levels were rapidly upregulated suggesting that the regulation of FLRT3 expression is mainly occurring at the level of transcriptional elongation. Blockage of FLRT3 by siRNA decreased survival of ECs and their arrangement into capillary-like structures but enhanced cell migration and wound closure in wound healing assay. Bifunctional role of FLRT3 in repulsive vs. adhesive cell signaling has been already detected during embryogenesis and neuronal growth, and depends on its interactions either with UNC5B or another FLRT3 expressed by adjacent cells. In conclusion, our findings demonstrate that besides regulating neuronal cell outgrowth and morphogenesis, FLRT3 has a novel role in ECs via regulating VEGF-stimulated EC-survival, migration, and tube formation. Thus, FLRT3 becomes a new member of the axon guidance-related factors which participate in the VEGF-signaling and regulation of the EC functions.
  •  
3.
  • Nitzsche, Anja, 1985-, et al. (author)
  • Paladin is a phosphoinositide phosphatase regulating endosomal VEGFR2 signalling and angiogenesis
  • 2021
  • In: EMBO Reports. - : EMBO Press. - 1469-221X .- 1469-3178. ; 22:2
  • Journal article (peer-reviewed)abstract
    • Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P-2), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non-plasma membrane PI(4,5)P-2, and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P-2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over-activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P-2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.
  •  
4.
  • Orsenigo, Fabrizio, et al. (author)
  • Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution
  • 2020
  • In: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 9
  • Journal article (peer-reviewed)abstract
    • Cerebral cavernous malformation (CCM) is a rare neurovascular disease that is characterized by enlarged and irregular blood vessels that often lead to cerebral hemorrhage. Loss-of-function mutations to any of three genes results in CCM lesion formation; namely, KRIT1, CCM2, and PDCD10 (CCM3). Here, we report for the first time in-depth single-cell RNA sequencing, combined with spatial transcriptomics and immunohistochemistry, to comprehensively characterize subclasses of brain endothelial cells (ECs) under both normal conditions and after deletion of Pdcd10 (Ccm3) in a mouse model of CCM. Integrated single-cell analysis identifies arterial ECs as refractory to CCM transformation. Conversely, a subset of angiogenic venous capillary ECs and respective resident endothelial progenitors appear to be at the origin of CCM lesions. These data are relevant for the understanding of the plasticity of the brain vascular system and provide novel insights into the molecular basis of CCM disease at the single cell level.
  •  
5.
  • Rezai Jahromi, Behnam, et al. (author)
  • Slow-Closing Clip for the Treatment of Nonsaccular Vertebrobasilar Aneurysms : A Retrospective Case Series
  • 2022
  • In: World Neurosurgery. - : Elsevier. - 1878-8750 .- 1878-8769. ; 168, s. e645-e665
  • Journal article (peer-reviewed)abstract
    • ObjectiveVertebrobasilar artery nonsaccular aneurysms (VBANSAs) are associated with a 13% annual mortality. Revascularization and flow diversion are life-saving options in select cases; technical failures and rapid hemodynamic changes may contribute to unwanted outcomes. We describe a technique and report clinical outcomes of patients treated with an experimental slow-closing clip (SCC).MethodsAn experimental SCC was created to gradually close the parent artery of aneurysms. Clinical, radiographic, and outcome data from patients with VBANSAs who underwent experimental treatment with the SCC were retrospectively analyzed.ResultsAmong 10 patients (7 men; mean age, 49.5 years; range, 18–73 years), 6 presented with mass effect symptoms, 1 with ischemic stroke, 2 with subarachnoid hemorrhage, and 1 with hydrocephalus. Five patients underwent revascularization plus SCC application, and 5 were treated with SCC alone. The mean follow-up was 6.7 years. The expected mortality among patients with unruptured VBANSAs with previous treatment options in this period was 52.7%, whereas the observed rate was 20%. Four patients died within 12 months after treatment. Causes of death were brainstem ischemic stroke, poor-grade subarachnoid hemorrhage, poor clinical presentation, and unknown. Six patients were alive at last follow-up, with unchanged or improved modified Rankin Scale scores. Mortality was associated with posterior-projecting aneurysms and late-stage treatment.ConclusionsIn this small case series, use of SCC overcame the natural history of VBANSAs when treatment timing and aneurysm anatomy were suitable. The SCC potentially favors aneurysm thrombosis and collateral reactivation. More studies are necessary to better develop the SCC.
  •  
6.
  • Yau, Anthony C. Y., et al. (author)
  • Inflammation and neutrophil extracellular traps in cerebral cavernous malformation
  • 2022
  • In: Cellular and Molecular Life Sciences (CMLS). - : Springer Nature. - 1420-682X .- 1420-9071. ; 79:4
  • Journal article (peer-reviewed)abstract
    • Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3(iECKO)), we show that endothelial cells from Ccm3(iECKO) mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3(iECKO) mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3(iECKO) mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas of patients with CCM confirms the clinical relevance of NETs in CCM.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view