SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jeliazkova Nina) srt2:(2015-2019)"

Sökning: WFRF:(Jeliazkova Nina) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Honma, Masamitsu, et al. (författare)
  • Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity : outcomes of the Ames/QSAR International Challenge Project
  • 2019
  • Ingår i: Mutagenesis. - Oxford : Oxford University Press (OUP). - 0267-8357 .- 1464-3804. ; 34:1, s. 3-16
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure-activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.
  •  
2.
  • Spjuth, Ola, 1977-, et al. (författare)
  • XMetDB : an open access database for xenobiotic metabolism
  • 2016
  • Ingår i: Journal of Cheminformatics. - : Springer Science and Business Media LLC. - 1758-2946. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Xenobiotic metabolism is an active research topic but the limited amount of openly available high-quality biotransformation data constrains predictive modeling. Current database often default to commonly available information: which enzyme metabolizes a compound, but neither experimental conditions nor the atoms that undergo metabolization are captured. We present XMetDB, an open access database for drugs and other xenobiotics and their respective metabolites. The database contains chemical structures of xenobiotic biotransformations with substrate atoms annotated as reaction centra, the resulting product formed, and the catalyzing enzyme, type of experiment, and literature references. Associated with the database is a web interface for the submission and retrieval of experimental metabolite data for drugs and other xenobiotics in various formats, and a web API for programmatic access is also available. The database is open for data deposition, and a curation scheme is in place for quality control. An extensive guide on how to enter experimental data into is available from the XMetDB wiki. XMetDB formalizes how biotransformation data should be reported, and the openly available systematically labeled data is a big step forward towards better models for predictive metabolism.
  •  
3.
  • Willighagen, Egon L., et al. (författare)
  • The Chemistry Development Kit (CDK) v2.0 : atom typing, depiction, molecular formulas, and substructure searching
  • 2017
  • Ingår i: Journal of Cheminformatics. - : Springer Science and Business Media LLC. - 1758-2946. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Chemistry Development Kit (CDK) is a widely used open source cheminformatics toolkit, providing data structures to represent chemical concepts along with methods to manipulate such structures and perform computations on them. The library implements a wide variety of cheminformatics algorithms ranging from chemical structure canonicalization to molecular descriptor calculations and pharmacophore perception. It is used in drug discovery, metabolomics, and toxicology. Over the last 10 years, the code base has grown significantly, however, resulting in many complex interdependencies among components and poor performance of many algorithms.Results: We report improvements to the CDK v2.0 since the v1.2 release series, specifically addressing the increased functional complexity and poor performance. We first summarize the addition of new functionality, such atom typing and molecular formula handling, and improvement to existing functionality that has led to significantly better performance for substructure searching, molecular fingerprints, and rendering of molecules. Second, we outline how the CDK has evolved with respect to quality control and the approaches we have adopted to ensure stability, including a code review mechanism.Conclusions: This paper highlights our continued efforts to provide a community driven, open source cheminformatics library, and shows that such collaborative projects can thrive over extended periods of time, resulting in a high-quality and performant library. By taking advantage of community support and contributions, we show that an open source cheminformatics project can act as a peer reviewed publishing platform for scientific computing software.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy