SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jenke Peter A.) "

Sökning: WFRF:(Jenke Peter A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhat, P. Narayana, et al. (författare)
  • THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG : THE FIRST SIX YEARS
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 223:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two.-ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [NaI[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
  •  
2.
  • Tsygankov, Sergey S., et al. (författare)
  • NuSTAR discovery of a cyclotron absorption line in the transient X-ray pulsar 2S 1553-542
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 457:1, s. 258-266
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of a spectral and timing analysis of the poorly studied transient X-ray pulsar 2S 1553-542 using data collected with the NuSTAR and Chandra observatories and the Fermi/GBM instrument during an outburst in 2015. The properties of the source at high energies (>30 keV) are studied for the first time and the sky position has been essentially improved. The source broad-band spectrum has a quite complicated shape and can be reasonably described by a composite model with two continuum components - a blackbody emission with the temperature about 1 keV at low energies and a power law with an exponential cut-off at high energies. Additionally, an absorption feature at similar to 23.5 keV is discovered both in phase-averaged and phase-resolved spectra and interpreted as the cyclotron resonance scattering feature corresponding to the magnetic field strength of the neutron star B similar to 3 x 10(12) G. Based on the Fermi/ GBM data, the orbital parameters of the system were substantially improved, which allowed us to determine the spin period of the neutron star P = 9.27880(3) s and a local spin-up. (P) over dot similar or equal to -7.5 x 10(-10) s s(-1) due to the mass accretion during the NuSTAR observations. Assuming accretion from the disc and using standard torque models, we estimated the distance to the system as d = 20 +/- 4 kpc.
  •  
3.
  • Yu, Hoi-Fung, et al. (författare)
  • Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We study the time-resolved spectral properties of energetic gamma-ray bursts (GRBs) with good high-energy photon statistics observed by the Gamma-Ray Burst Monitor ((IBM) onboard the Fermi Gamma-Ray Space Telescope. Aims. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. Methods. Our sample comprises eight GRBs observed by the Fermi (IBM in its first five years of mission, with 1 keV-1 MeV fluence f > 1.0 x 10(-4) erg cm(-2) and a signal-to-noise ratio level of S/N >= 10.0 above 900 keV. We performed a time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We performed Band function fits to all spectra and obtained the distributions for the low-energy power-lay index alpha, the high-energy power-law index beta, the peak energy in the observed nu F-nu, spectrum E-p, and the difference between the low- and high-energy power-law indices Delta s = alpha-beta. We also applied a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test the prompt emission for consistency with a synchrotron origin and obtain the distributions for the two break energies E-b,E-1 and E-b,E-2 the middle segment power-law index beta, and the Planck function temperature kT. Results. The Band function parameter distributions are alpha = -0.73(-0.21)(+0.16), beta = -2.13(-0.56)(+0.28), E-p = 374.47(-187.7)(+307.3) keV (log(10) E-p = 2.577(-0.30)(+0.26)), and Delta s = 1.38(-0.31)(+0.54), with average errors sigma(alpha) similar to 0.1, sigma(beta) similar to 0.2, and sigma(Ep) similar to 0.1E(p). Using the distributions of Delta s and beta, the electron population index p is found to be consistent with the "moderately fast" scenario, in which fast- and slow-cooling scenarios cannot be distinguished. The physically motivated synchrotron-fitting function parameter distributions are E-b,E-1 = 129.6(-32.4)(+132.2) keV, E-b,E-2 = 631.4(-309.6)(+582) keV, beta = 1.721(-0.25)(+0.48), and kT = 10.4(-3.7)(+4.9) keV, with average errors sigma(beta) similar to 0.2, sigma E-b,E-1 similar to 0.1E(b,1), sigma E-b,E-2 similar to 0.4E(b,2,) and sigma(kT) similar to 0.1kT. This synchrotron function requires the synchrotron injection and cooling break (i.e., E-min and E-cool) to be close to each other within a factor of ten, often in addition to a Planck function. Conclusions. A synchrotron model is found that is consistent with most of the time-resolved spectra for eight energetic Fermi (IBM bursts with good high-energy photon statistics as long as both the cooling and injection break are included and the leftmost spectral slope is lifted either by including a thermal component or when an evolving magnetic field is accounted for.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy