SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jeon A) srt2:(2005-2009)"

Sökning: WFRF:(Jeon A) > (2005-2009)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Armesto, N., et al. (författare)
  • Heavy-ion collisions at the LHC-Last call for predictions
  • 2008
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 35:5, s. 054001-
  • Forskningsöversikt (refereegranskat)abstract
    • This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute 'Heavy Ion Collisions at the LHC - Last Call for Predictions', held from 14th May to 10th June 2007.
  •  
2.
  •  
3.
  •  
4.
  • Bhatnagar, Amit, et al. (författare)
  • Removal of anionic dyes from water using Citrus limonum (lemon) peel:  Equilibrium studies and kinetic modeling
  • 2009
  • Ingår i: Separation science and technology (Print). - : Informa UK Limited. - 0149-6395 .- 1520-5754. ; 44, s. 316-334
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study was undertaken to evaluate the adsorption potential of Citrus limonum (lemon) peel as an adsorbent for the removal of two anionic dyes, Methyl orange (MO) and Congo red (CR) from aqueous solutions. The adsorption was studied as a function of contact time, initial concentration, and temperature by batch method. The adsorption capacities of lemon peel adsorbent for dyes were found 50.3 and 34.5 mg/g for MO and CR, respectively. The equilibrium adsorption data was well described by the Langmuir model. Three simplified kinetic models viz. pseudo-first-order, pseudo-second-order, and Weber and Morris intraparticle diffusion model were tested to describe the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities, and related correlation coefficients for each kinetic model were determined. It was found that the present system of dyes adsorption on lemon peel adsorbent could be described more favorably by the pseudo-first-order kinetic model. The results of the present study reveal that lemon peel adsorbent can be fruitfully utilized as an inexpensive adsorbent for dyes removal from effluents.
  •  
5.
  • Bhatnagar, Amit, et al. (författare)
  • Removal of phenolic pollutants from water utilizing Mangifera indica (Mango) seed waste and cement fixation
  • 2009
  • Ingår i: Separation science and technology (Print). - : Informa UK Limited. - 0149-6395 .- 1520-5754. ; 44:13, s. 3150-3169
  • Tidskriftsartikel (refereegranskat)abstract
    • A process for the removal of two chlorophenols (2-chlorophenol and 2,4-dichlorophenol) from water using surface modified mango seed waste by adsorption process followed by cement fixation of the phenols-laden adsorbent is investigated. The two main objectives of this study were to develop efficient adsorbent utilizing mango seed waste by physiochemical activation and to an environmentally-friendly disposal of phenols-laden adsorbent into cement by a fixation process. The results of the present study reveal that the modified mango seed adsorbent showed an efficient adsorption potential for chlorophenols removal from water. The maximum adsorption potential of modified mango seed adsorbent for 2-chlorophenol and 2,4-dichlorophenol was 40.6 and 72.3 mg g−1, respectively at 25°C. Adsorption kinetic data of chlorophenols adsorption on mango seed adsorbent could be described more favorably by a pseudo-second-order kinetic model. After the adsorption studies, the phenol-laden adsorbent was immobilized in cement for its ultimate disposal. Leachates from the fixed phenols-laden adsorbent exhibit phenols concentrations lower than the drinking water standards. Results from this study suggest the potential utility of agricultural wastes as one of the most promising activated carbon precursors for phenols removal from water and wastewater and the safe disposal of phenol-laden adsorbent into cement by fixation process.
  •  
6.
  •  
7.
  •  
8.
  • Hwang, JH, et al. (författare)
  • Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora
  • 2009
  • Ingår i: International journal of hydrogen energy. - : Elsevier BV. - 0360-3199 .- 1879-3487. ; 34:24, s. 9702-9710
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of varying sulfate concentrations with pH on continuous fermentative hydrogen production were studied using anaerobic mixed cultures growing on a glucose substrate in a chemostat reactor. The maximum hydrogen production rate was 2.8 L/day at pH 5.5 and sulfate concentration of 3000 mg/L. Hydrogen production and residual sulfate level decreased with increasing the pH from 5.5 to 6.2. The volatile fatty acids (VFAs) and ethanol fractions in the effluent were in the order of butyric acid (HBu) > acetic acid (HAc) > ethanol > propionic acid (HPr). Fluorescence In Situ Hybridization (FISH) analysis revealed the presence of hydrogen producing bacteria (HPB) under all pH ranges while sulfate reducing bacteria (SRB) were present at pH 5.8 and 6.2. The inhibition in hydrogen production by SRB at pH 6.2 diminished entirely by lowering to pH 5.5, at which activity of SRB is substantially suppressed.
  •  
9.
  • Hwang, J.W., et al. (författare)
  • Effect of COD/SO42- ratio and Fe(II) under the variable hydraulic retention time (HRT) on fermentative hydrogen production
  • 2009
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 43, s. 3525-3533
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of chemical oxygen demand/sulfate (COD/SO42−) ratio on fermentative hydrogen production using enriched mixed microflora has been studied. The chemostat system maintained with a substrate (glucose) concentration of 15 g COD L−1 exhibited stable H2 production at inlet sulfate concentrations of 0–20 g L−1 during 282 days. The tested COD/SO42− ratios ranged from 150 to 0.75 (with control) at pH 5.5 with hydraulic retention time (HRT) of 24, 12 and 6 h. The hydrogen production at HRT 6 h and pH 5.5 was not influenced by decreasing the COD/SO42− ratio from 150 to 15 (with control) followed by noticeable increase at COD/SO42− ratios of 5 and 3, but it was slightly decreased when the COD/SO42− ratio further decreased to 1.5 and 0.75. These results indicate that high sulfate concentrations (up to 20,000 mg L−1) would not interfere with hydrogen production under the investigated experimental conditions. Maximum hydrogen production was 2.95, 4.60 and 9.40 L day−1 with hydrogen yields of 2.0, 1.8 and 1.6 mol H2 mol−1 glucose at HRTs of 24, 12 and 6 h, respectively. The volatile fatty acid (VFA) fraction produced during the reaction was in the order of butyrate > acetate > ethanol > propionate in all experiments. Fluorescence In Situ Hybridization (FISH) analysis indicated the presence of Clostridium spp., Clostridium butyricum, Clostridium perfringens andRuminococcus flavefaciens as hydrogen producing bacteria (HPB) and absence of sulfate reducing bacteria (SRB) in our study.
  •  
10.
  • Jeon, Jongmin, et al. (författare)
  • Endocrine cell clustering during human pancreas development
  • 2009
  • Ingår i: Journal of Histochemistry and Cytochemistry. - : SAGE Publications. - 0022-1554 .- 1551-5044. ; 57:9, s. 811-824
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of efficient, reproducible protocols for directed in vitro differentiation of hES cells into insulin producing beta cells will benefit greatly from increased knowledge regarding the spatiotemporal expression profile of key instructive factors involved in human endocrine cell generation. Human fetal pancreases, from 7 to 21 weeks of gestational age, were collected following consent immediately after pregnancy termination and processed for immunostaining, in situ hybridization and real-time RT-PCR expression analyses. Islet-like structures appear from approximately week 12 and unlike the mixed architecture observed in the adult islets, fetal islets are initially formed predominantly by aggregated insulin or glucagon-expressing cells. The period studied (7-22 weeks) coincides with a decrease in the proliferation and an increase in the differentiation of the progenitor cells, the initiation of NGN3 expression and the appearance of differentiated endocrine cells. The present study provides a detailed characterization of islet formation and expression profiles of key intrinsic and extrinsic factors during human pancreas development. This information is beneficial for the development of efficient protocols that will allow guided in vitro differentiation of hES cells into insulin-producing cells.
  •  
11.
  • Oström, Maria, et al. (författare)
  • Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells
  • 2008
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 3:7, s. e2841-
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of secreted factors that can selectively stimulate the generation of insulin producing beta-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based beta-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of beta-cells during normal pancreatic development such putative factors may be identified. In the mouse, beta-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of beta-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when beta-cells are generated. We also provide evidence that RA induces the generation of Ngn3(+) endocrine progenitor cells and stimulates their further differentiation into beta-cells by activating a program of cell differentiation that recapitulates the normal temporal program of beta-cell differentiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy